pyspark.sql.functions.min#
- pyspark.sql.functions.min(col)[source]#
Aggregate function: returns the minimum value of the expression in a group.
New in version 1.3.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters
- col
Column
or str The target column on which the minimum value is computed.
- col
- Returns
Column
A column that contains the minimum value computed.
Examples
Example 1: Compute the minimum value of a numeric column
>>> import pyspark.sql.functions as sf >>> df = spark.range(10) >>> df.select(sf.min(df.id)).show() +-------+ |min(id)| +-------+ | 0| +-------+
Example 2: Compute the minimum value of a string column
>>> import pyspark.sql.functions as sf >>> df = spark.createDataFrame([("Alice",), ("Bob",), ("Charlie",)], ["name"]) >>> df.select(sf.min("name")).show() +---------+ |min(name)| +---------+ | Alice| +---------+
Example 3: Compute the minimum value of a column with null values
>>> import pyspark.sql.functions as sf >>> df = spark.createDataFrame([(1,), (None,), (3,)], ["value"]) >>> df.select(sf.min("value")).show() +----------+ |min(value)| +----------+ | 1| +----------+
Example 4: Compute the minimum value of a column in a grouped DataFrame
>>> import pyspark.sql.functions as sf >>> df = spark.createDataFrame([("Alice", 1), ("Alice", 2), ("Bob", 3)], ["name", "value"]) >>> df.groupBy("name").agg(sf.min("value")).show() +-----+----------+ | name|min(value)| +-----+----------+ |Alice| 1| | Bob| 3| +-----+----------+
Example 5: Compute the minimum value of a column in a DataFrame with multiple columns
>>> import pyspark.sql.functions as sf >>> df = spark.createDataFrame( ... [("Alice", 1, 100), ("Bob", 2, 200), ("Charlie", 3, 300)], ... ["name", "value1", "value2"]) >>> df.select(sf.min("value1"), sf.min("value2")).show() +-----------+-----------+ |min(value1)|min(value2)| +-----------+-----------+ | 1| 100| +-----------+-----------+