pyspark.pandas.MultiIndex.from_frame#
- static MultiIndex.from_frame(df, names=None)[source]#
Make a MultiIndex from a DataFrame.
- Parameters
- dfDataFrame
DataFrame to be converted to MultiIndex.
- nameslist-like, optional
If no names are provided, use the column names, or tuple of column names if the column is a MultiIndex. If a sequence, overwrite names with the given sequence.
- Returns
- MultiIndex
The MultiIndex representation of the given DataFrame.
See also
MultiIndex.from_arrays
Convert list of arrays to MultiIndex.
MultiIndex.from_tuples
Convert list of tuples to MultiIndex.
MultiIndex.from_product
Make a MultiIndex from cartesian product of iterables.
Examples
>>> df = ps.DataFrame([['HI', 'Temp'], ['HI', 'Precip'], ... ['NJ', 'Temp'], ['NJ', 'Precip']], ... columns=['a', 'b']) >>> df a b 0 HI Temp 1 HI Precip 2 NJ Temp 3 NJ Precip
>>> ps.MultiIndex.from_frame(df) MultiIndex([('HI', 'Temp'), ('HI', 'Precip'), ('NJ', 'Temp'), ('NJ', 'Precip')], names=['a', 'b'])
Using explicit names, instead of the column names
>>> ps.MultiIndex.from_frame(df, names=['state', 'observation']) MultiIndex([('HI', 'Temp'), ('HI', 'Precip'), ('NJ', 'Temp'), ('NJ', 'Precip')], names=['state', 'observation'])