pyspark.sql.Catalog.cacheTable#
- Catalog.cacheTable(tableName, storageLevel=None)[source]#
Caches the specified table in-memory or with given storage level. Default MEMORY_AND_DISK.
New in version 2.0.0.
- Parameters
- tableNamestr
name of the table to get.
Changed in version 3.4.0: Allow
tableName
to be qualified with catalog name.- storageLevel
StorageLevel
, optional storage level to set for persistence.
Changed in version 3.5.0: Allow to specify storage level.
Examples
>>> _ = spark.sql("DROP TABLE IF EXISTS tbl1") >>> _ = spark.sql("CREATE TABLE tbl1 (name STRING, age INT) USING parquet") >>> spark.catalog.cacheTable("tbl1")
or
>>> spark.catalog.cacheTable("tbl1", StorageLevel.OFF_HEAP)
Throw an analysis exception when the table does not exist.
>>> spark.catalog.cacheTable("not_existing_table") Traceback (most recent call last): ... AnalysisException: ...
Using the fully qualified name for the table.
>>> spark.catalog.cacheTable("spark_catalog.default.tbl1") >>> spark.catalog.uncacheTable("tbl1") >>> _ = spark.sql("DROP TABLE tbl1")