public final class OneVsRest extends Estimator<OneVsRestModel> implements OneVsRestParams, HasParallelism, MLWritable
Modifier and Type | Method and Description |
---|---|
Param<Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>>> |
classifier()
param for the base binary classifier that we reduce multiclass classification into.
|
OneVsRest |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
featuresCol()
Param for features column name.
|
OneVsRestModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
Param<String> |
labelCol()
Param for label column name.
|
static OneVsRest |
load(String path) |
IntParam |
parallelism()
The number of threads to use when running parallel algorithms.
|
Param<String> |
predictionCol()
Param for prediction column name.
|
Param<String> |
rawPredictionCol()
Param for raw prediction (a.k.a.
|
static MLReader<OneVsRest> |
read() |
OneVsRest |
setClassifier(Classifier<?,?,?> value) |
OneVsRest |
setFeaturesCol(String value) |
OneVsRest |
setLabelCol(String value) |
OneVsRest |
setParallelism(int value)
The implementation of parallel one vs.
|
OneVsRest |
setPredictionCol(String value) |
OneVsRest |
setRawPredictionCol(String value) |
OneVsRest |
setWeightCol(String value)
Sets the value of param
weightCol . |
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Param<String> |
weightCol()
Param for weight column name.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
params
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getClassifier
validateAndTransformSchema
getLabelCol
getFeaturesCol
getPredictionCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
getRawPredictionCol
getWeightCol
getExecutionContext, getParallelism
save
$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize
public static OneVsRest load(String path)
public IntParam parallelism()
HasParallelism
parallelism
in interface HasParallelism
public Param<Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>>> classifier()
OneVsRestParams
OneVsRest
.classifier
in interface OneVsRestParams
public final Param<String> weightCol()
HasWeightCol
weightCol
in interface HasWeightCol
public final Param<String> rawPredictionCol()
HasRawPredictionCol
rawPredictionCol
in interface HasRawPredictionCol
public final Param<String> predictionCol()
HasPredictionCol
predictionCol
in interface HasPredictionCol
public final Param<String> featuresCol()
HasFeaturesCol
featuresCol
in interface HasFeaturesCol
public final Param<String> labelCol()
HasLabelCol
labelCol
in interface HasLabelCol
public String uid()
Identifiable
uid
in interface Identifiable
public OneVsRest setClassifier(Classifier<?,?,?> value)
public OneVsRest setLabelCol(String value)
public OneVsRest setFeaturesCol(String value)
public OneVsRest setPredictionCol(String value)
public OneVsRest setRawPredictionCol(String value)
public OneVsRest setParallelism(int value)
value
- (undocumented)public OneVsRest setWeightCol(String value)
weightCol
.
This is ignored if weight is not supported by classifier
.
If this is not set or empty, we treat all instance weights as 1.0.
Default is not set, so all instances have weight one.
value
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public OneVsRestModel fit(Dataset<?> dataset)
Estimator
fit
in class Estimator<OneVsRestModel>
dataset
- (undocumented)public OneVsRest copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Estimator<OneVsRestModel>
extra
- (undocumented)public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable