Isotonic Regression Model
spark.isoreg.Rd
Fits an Isotonic Regression model against a SparkDataFrame, similarly to R's isoreg(). Users can print, make predictions on the produced model and save the model to the input path.
Usage
spark.isoreg(data, formula, ...)
# S4 method for class 'SparkDataFrame,formula'
spark.isoreg(
data,
formula,
isotonic = TRUE,
featureIndex = 0,
weightCol = NULL
)
# S4 method for class 'IsotonicRegressionModel'
summary(object)
# S4 method for class 'IsotonicRegressionModel'
predict(object, newData)
# S4 method for class 'IsotonicRegressionModel,character'
write.ml(object, path, overwrite = FALSE)
Arguments
- data
SparkDataFrame for training.
- formula
A symbolic description of the model to be fitted. Currently only a few formula operators are supported, including '~', '.', ':', '+', and '-'.
- ...
additional arguments passed to the method.
- isotonic
Whether the output sequence should be isotonic/increasing (TRUE) or antitonic/decreasing (FALSE).
- featureIndex
The index of the feature if
featuresCol
is a vector column (default: 0), no effect otherwise.- weightCol
The weight column name.
- object
a fitted IsotonicRegressionModel.
- newData
SparkDataFrame for testing.
- path
The directory where the model is saved.
- overwrite
Overwrites or not if the output path already exists. Default is FALSE which means throw exception if the output path exists.
Value
spark.isoreg
returns a fitted Isotonic Regression model.
summary
returns summary information of the fitted model, which is a list.
The list includes model's boundaries
(boundaries in increasing order)
and predictions
(predictions associated with the boundaries at the same index).
predict
returns a SparkDataFrame containing predicted values.
Note
spark.isoreg since 2.1.0
summary(IsotonicRegressionModel) since 2.1.0
predict(IsotonicRegressionModel) since 2.1.0
write.ml(IsotonicRegression, character) since 2.1.0
Examples
if (FALSE) { # \dontrun{
sparkR.session()
data <- list(list(7.0, 0.0), list(5.0, 1.0), list(3.0, 2.0),
list(5.0, 3.0), list(1.0, 4.0))
df <- createDataFrame(data, c("label", "feature"))
model <- spark.isoreg(df, label ~ feature, isotonic = FALSE)
# return model boundaries and prediction as lists
result <- summary(model, df)
# prediction based on fitted model
predict_data <- list(list(-2.0), list(-1.0), list(0.5),
list(0.75), list(1.0), list(2.0), list(9.0))
predict_df <- createDataFrame(predict_data, c("feature"))
# get prediction column
predict_result <- collect(select(predict(model, predict_df), "prediction"))
# save fitted model to input path
path <- "path/to/model"
write.ml(model, path)
# can also read back the saved model and print
savedModel <- read.ml(path)
summary(savedModel)
} # }