summary
summary.Rd
Computes specified statistics for numeric and string columns. Available statistics are:
count
mean
stddev
min
max
arbitrary approximate percentiles specified as a percentage (e.g., "75%")
If no statistics are given, this function computes count, mean, stddev, min,
approximate quartiles (percentiles at 25%, 50%, and 75%), and max.
This function is meant for exploratory data analysis, as we make no guarantee about the
backward compatibility of the schema of the resulting Dataset. If you want to
programmatically compute summary statistics, use the agg
function instead.
Note
summary(SparkDataFrame) since 1.5.0
The statistics provided by summary
were change in 2.3.0 use describe for
previous defaults.
See also
Other SparkDataFrame functions:
SparkDataFrame-class
,
agg()
,
alias()
,
arrange()
,
as.data.frame()
,
attach,SparkDataFrame-method
,
broadcast()
,
cache()
,
checkpoint()
,
coalesce()
,
collect()
,
colnames()
,
coltypes()
,
createOrReplaceTempView()
,
crossJoin()
,
cube()
,
dapply()
,
dapplyCollect()
,
describe()
,
dim()
,
distinct()
,
drop()
,
dropDuplicates()
,
dropna()
,
dtypes()
,
except()
,
exceptAll()
,
explain()
,
filter()
,
first()
,
gapply()
,
gapplyCollect()
,
getNumPartitions()
,
group_by()
,
head()
,
hint()
,
histogram()
,
insertInto()
,
intersect()
,
intersectAll()
,
isLocal()
,
isStreaming()
,
join()
,
limit()
,
localCheckpoint()
,
merge()
,
mutate()
,
ncol()
,
nrow()
,
persist()
,
printSchema()
,
randomSplit()
,
rbind()
,
rename()
,
repartition()
,
repartitionByRange()
,
rollup()
,
sample()
,
saveAsTable()
,
schema()
,
select()
,
selectExpr()
,
show()
,
showDF()
,
storageLevel()
,
str()
,
subset()
,
take()
,
toJSON()
,
union()
,
unionAll()
,
unionByName()
,
unpersist()
,
unpivot()
,
with()
,
withColumn()
,
withWatermark()
,
write.df()
,
write.jdbc()
,
write.json()
,
write.orc()
,
write.parquet()
,
write.stream()
,
write.text()
Examples
if (FALSE) { # \dontrun{
sparkR.session()
path <- "path/to/file.json"
df <- read.json(path)
summary(df)
summary(df, "min", "25%", "75%", "max")
summary(select(df, "age", "height"))
} # }