pyspark.sql.DataFrameReader.csv

DataFrameReader.csv(path, schema=None, sep=None, encoding=None, quote=None, escape=None, comment=None, header=None, inferSchema=None, ignoreLeadingWhiteSpace=None, ignoreTrailingWhiteSpace=None, nullValue=None, nanValue=None, positiveInf=None, negativeInf=None, dateFormat=None, timestampFormat=None, maxColumns=None, maxCharsPerColumn=None, maxMalformedLogPerPartition=None, mode=None, columnNameOfCorruptRecord=None, multiLine=None, charToEscapeQuoteEscaping=None, samplingRatio=None, enforceSchema=None, emptyValue=None, locale=None, lineSep=None, pathGlobFilter=None, recursiveFileLookup=None, modifiedBefore=None, modifiedAfter=None, unescapedQuoteHandling=None)[source]

Loads a CSV file and returns the result as a DataFrame.

This function will go through the input once to determine the input schema if inferSchema is enabled. To avoid going through the entire data once, disable inferSchema option or specify the schema explicitly using schema.

New in version 2.0.0.

Parameters
pathstr or list

string, or list of strings, for input path(s), or RDD of Strings storing CSV rows.

schemapyspark.sql.types.StructType or str, optional

an optional pyspark.sql.types.StructType for the input schema or a DDL-formatted string (For example col0 INT, col1 DOUBLE).

Other Parameters
Extra options

For the extra options, refer to Data Source Option in the version you use.

Examples

>>> df = spark.read.csv('python/test_support/sql/ages.csv')
>>> df.dtypes
[('_c0', 'string'), ('_c1', 'string')]
>>> rdd = sc.textFile('python/test_support/sql/ages.csv')
>>> df2 = spark.read.csv(rdd)
>>> df2.dtypes
[('_c0', 'string'), ('_c1', 'string')]