Frequent Pattern Mining - RDD-based API

Mining frequent items, itemsets, subsequences, or other substructures is usually among the first steps to analyze a large-scale dataset, which has been an active research topic in data mining for years. We refer users to Wikipedia’s association rule learning for more information. spark.mllib provides a parallel implementation of FP-growth, a popular algorithm to mining frequent itemsets.

FP-growth

The FP-growth algorithm is described in the paper Han et al., Mining frequent patterns without candidate generation, where “FP” stands for frequent pattern. Given a dataset of transactions, the first step of FP-growth is to calculate item frequencies and identify frequent items. Different from Apriori-like algorithms designed for the same purpose, the second step of FP-growth uses a suffix tree (FP-tree) structure to encode transactions without generating candidate sets explicitly, which are usually expensive to generate. After the second step, the frequent itemsets can be extracted from the FP-tree. In spark.mllib, we implemented a parallel version of FP-growth called PFP, as described in Li et al., PFP: Parallel FP-growth for query recommendation. PFP distributes the work of growing FP-trees based on the suffixes of transactions, and hence more scalable than a single-machine implementation. We refer users to the papers for more details.

spark.mllib’s FP-growth implementation takes the following (hyper-)parameters:

Examples

FPGrowth implements the FP-growth algorithm. It takes an RDD of transactions, where each transaction is an Array of items of a generic type. Calling FPGrowth.run with transactions returns an FPGrowthModel that stores the frequent itemsets with their frequencies. The following example illustrates how to mine frequent itemsets and association rules (see Association Rules for details) from transactions.

Refer to the FPGrowth Scala docs for details on the API.

import org.apache.spark.mllib.fpm.FPGrowth import org.apache.spark.rdd.RDD

val data = sc.textFile(“data/mllib/sample_fpgrowth.txt”)

val transactions: RDD[Array[String]] = data.map(s => s.trim.split(’ ‘))

val fpg = new FPGrowth() .setMinSupport(0.2) .setNumPartitions(10) val model = fpg.run(transactions)

model.freqItemsets.collect().foreach { itemset => println(s”${itemset.items.mkString(“[, ,, ]”)},${itemset.freq}”) }

val minConfidence = 0.8 model.generateAssociationRules(minConfidence).collect().foreach { rule => println(s”${rule.antecedent.mkString(“[, ,, ]”)}=> “ + s”${rule.consequent .mkString(“[, ,, ]”)},${rule.confidence}”) }

Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/SimpleFPGrowth.scala" in the Spark repo.

FPGrowth implements the FP-growth algorithm. It takes a JavaRDD of transactions, where each transaction is an Iterable of items of a generic type. Calling FPGrowth.run with transactions returns an FPGrowthModel that stores the frequent itemsets with their frequencies. The following example illustrates how to mine frequent itemsets and association rules (see Association Rules for details) from transactions.

Refer to the FPGrowth Java docs for details on the API.

import java.util.Arrays; import java.util.List;

import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.mllib.fpm.AssociationRules; import org.apache.spark.mllib.fpm.FPGrowth; import org.apache.spark.mllib.fpm.FPGrowthModel;

JavaRDD<String> data = sc.textFile(“data/mllib/sample_fpgrowth.txt”);

JavaRDD<List<String>> transactions = data.map(line -> Arrays.asList(line.split(” “)));

FPGrowth fpg = new FPGrowth() .setMinSupport(0.2) .setNumPartitions(10); FPGrowthModel<String> model = fpg.run(transactions);

for (FPGrowth.FreqItemset<String> itemset: model.freqItemsets().toJavaRDD().collect()) { System.out.println(”[” + itemset.javaItems() + ”], “ + itemset.freq()); }

double minConfidence = 0.8; for (AssociationRules.Rule<String> rule : model.generateAssociationRules(minConfidence).toJavaRDD().collect()) { System.out.println( rule.javaAntecedent() + ” => “ + rule.javaConsequent() + ”, “ + rule.confidence()); }

Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaSimpleFPGrowth.java" in the Spark repo.

FPGrowth implements the FP-growth algorithm. It takes an RDD of transactions, where each transaction is an List of items of a generic type. Calling FPGrowth.train with transactions returns an FPGrowthModel that stores the frequent itemsets with their frequencies.

Refer to the FPGrowth Python docs for more details on the API.

from pyspark.mllib.fpm import FPGrowth

data = sc.textFile(“data/mllib/sample_fpgrowth.txt”) transactions = data.map(lambda line: line.strip().split(’ ‘)) model = FPGrowth.train(transactions, minSupport=0.2, numPartitions=10) result = model.freqItemsets().collect() for fi in result: print(fi)

Find full example code at "examples/src/main/python/mllib/fpgrowth_example.py" in the Spark repo.

Association Rules

AssociationRules implements a parallel rule generation algorithm for constructing rules that have a single item as the consequent.

Refer to the AssociationRules Scala docs for details on the API.

import org.apache.spark.mllib.fpm.AssociationRules import org.apache.spark.mllib.fpm.FPGrowth.FreqItemset

val freqItemsets = sc.parallelize(Seq( new FreqItemset(Array(“a”), 15L), new FreqItemset(Array(“b”), 35L), new FreqItemset(Array(“a”, “b”), 12L) ))

val ar = new AssociationRules() .setMinConfidence(0.8) val results = ar.run(freqItemsets)

results.collect().foreach { rule => println(s”[${rule.antecedent.mkString(“,”)}=>${rule.consequent.mkString(“,”)} ]” + s” ${rule.confidence}”) }

Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/AssociationRulesExample.scala" in the Spark repo.

AssociationRules implements a parallel rule generation algorithm for constructing rules that have a single item as the consequent.

Refer to the AssociationRules Java docs for details on the API.

import java.util.Arrays;

import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.mllib.fpm.AssociationRules; import org.apache.spark.mllib.fpm.FPGrowth; import org.apache.spark.mllib.fpm.FPGrowth.FreqItemset;

JavaRDD<FPGrowth.FreqItemset<String>> freqItemsets = sc.parallelize(Arrays.asList( new FreqItemset<>(new String[] {“a”}, 15L), new FreqItemset<>(new String[] {“b”}, 35L), new FreqItemset<>(new String[] {“a”, “b”}, 12L) ));

AssociationRules arules = new AssociationRules() .setMinConfidence(0.8); JavaRDD<AssociationRules.Rule<String>> results = arules.run(freqItemsets);

for (AssociationRules.Rule<String> rule : results.collect()) { System.out.println( rule.javaAntecedent() + ” => “ + rule.javaConsequent() + ”, “ + rule.confidence()); }

Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaAssociationRulesExample.java" in the Spark repo.

PrefixSpan

PrefixSpan is a sequential pattern mining algorithm described in Pei et al., Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach. We refer the reader to the referenced paper for formalizing the sequential pattern mining problem.

spark.mllib’s PrefixSpan implementation takes the following parameters:

Examples

The following example illustrates PrefixSpan running on the sequences (using same notation as Pei et al):

  <(12)3>
  <1(32)(12)>
  <(12)5>
  <6>

PrefixSpan implements the PrefixSpan algorithm. Calling PrefixSpan.run returns a PrefixSpanModel that stores the frequent sequences with their frequencies.

Refer to the PrefixSpan Scala docs and PrefixSpanModel Scala docs for details on the API.

import org.apache.spark.mllib.fpm.PrefixSpan

val sequences = sc.parallelize(Seq( Array(Array(1, 2), Array(3)), Array(Array(1), Array(3, 2), Array(1, 2)), Array(Array(1, 2), Array(5)), Array(Array(6)) ), 2).cache() val prefixSpan = new PrefixSpan() .setMinSupport(0.5) .setMaxPatternLength(5) val model = prefixSpan.run(sequences) model.freqSequences.collect().foreach { freqSequence => println( s”${freqSequence.sequence.map(_.mkString(“[, , , ]”)).mkString(“[, , , ]”)},” + s” ${freqSequence.freq}”) }

Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/PrefixSpanExample.scala" in the Spark repo.

PrefixSpan implements the PrefixSpan algorithm. Calling PrefixSpan.run returns a PrefixSpanModel that stores the frequent sequences with their frequencies.

Refer to the PrefixSpan Java docs and PrefixSpanModel Java docs for details on the API.

import java.util.Arrays; import java.util.List;

import org.apache.spark.mllib.fpm.PrefixSpan; import org.apache.spark.mllib.fpm.PrefixSpanModel;

JavaRDD<List<List<Integer>>> sequences = sc.parallelize(Arrays.asList( Arrays.asList(Arrays.asList(1, 2), Arrays.asList(3)), Arrays.asList(Arrays.asList(1), Arrays.asList(3, 2), Arrays.asList(1, 2)), Arrays.asList(Arrays.asList(1, 2), Arrays.asList(5)), Arrays.asList(Arrays.asList(6)) ), 2); PrefixSpan prefixSpan = new PrefixSpan() .setMinSupport(0.5) .setMaxPatternLength(5); PrefixSpanModel<Integer> model = prefixSpan.run(sequences); for (PrefixSpan.FreqSequence<Integer> freqSeq: model.freqSequences().toJavaRDD().collect()) { System.out.println(freqSeq.javaSequence() + ”, “ + freqSeq.freq()); }

Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaPrefixSpanExample.java" in the Spark repo.