public class GeneralizedLinearRegressionSummary
extends Object
implements scala.Serializable
GeneralizedLinearRegression
model and predictions.
param: dataset Dataset to be summarized. param: origModel Model to be summarized. This is copied to create an internal model which cannot be modified from outside.
Modifier and Type | Method and Description |
---|---|
double |
aic()
Akaike Information Criterion (AIC) for the fitted model.
|
long |
degreesOfFreedom()
Degrees of freedom.
|
double |
deviance()
The deviance for the fitted model.
|
double |
dispersion()
The dispersion of the fitted model.
|
double |
nullDeviance()
The deviance for the null model.
|
long |
numInstances()
Number of instances in DataFrame predictions.
|
String |
predictionCol()
Field in "predictions" which gives the predicted value of each instance.
|
Dataset<Row> |
predictions()
Predictions output by the model's
transform method. |
long |
rank()
The numeric rank of the fitted linear model.
|
long |
residualDegreeOfFreedom()
The residual degrees of freedom.
|
long |
residualDegreeOfFreedomNull()
The residual degrees of freedom for the null model.
|
Dataset<Row> |
residuals()
Get the default residuals (deviance residuals) of the fitted model.
|
Dataset<Row> |
residuals(String residualsType)
Get the residuals of the fitted model by type.
|
public String predictionCol()
predictionCol
is not set.public Dataset<Row> predictions()
transform
method.public long numInstances()
public long rank()
public long degreesOfFreedom()
public long residualDegreeOfFreedom()
public long residualDegreeOfFreedomNull()
public Dataset<Row> residuals()
public Dataset<Row> residuals(String residualsType)
residualsType
- The type of residuals which should be returned.
Supported options: deviance, pearson, working and response.public double nullDeviance()
public double deviance()
public double dispersion()
public double aic()