Quick Start
This tutorial provides a quick introduction to using Spark. We will first introduce the API through Spark’s interactive shell (in Python or Scala), then show how to write applications in Java, Scala, and Python.
To follow along with this guide, first download a packaged release of Spark from the Spark website. Since we won’t be using HDFS, you can download a package for any version of Hadoop.
Note that, before Spark 2.0, the main programming interface of Spark was the Resilient Distributed Dataset (RDD). After Spark 2.0, RDDs are replaced by Dataset, which is strongly-typed like an RDD, but with richer optimizations under the hood. The RDD interface is still supported, and you can get a more complete reference at the RDD programming guide. However, we highly recommend you to switch to use Dataset, which has better performance than RDD. See the SQL programming guide to get more information about Dataset.
Interactive Analysis with the Spark Shell
Basics
Spark’s shell provides a simple way to learn the API, as well as a powerful tool to analyze data interactively. It is available in either Scala (which runs on the Java VM and is thus a good way to use existing Java libraries) or Python. Start it by running the following in the Spark directory:
./bin/spark-shell
Spark’s primary abstraction is a distributed collection of items called a Dataset. Datasets can be created from Hadoop InputFormats (such as HDFS files) or by transforming other Datasets. Let’s make a new Dataset from the text of the README file in the Spark source directory:
You can get values from Dataset directly, by calling some actions, or transform the Dataset to get a new one. For more details, please read the API doc.
Now let’s transform this Dataset to a new one. We call filter
to return a new Dataset with a subset of the items in the file.
We can chain together transformations and actions:
./bin/pyspark
Or if PySpark is installed with pip in your current environment:
pyspark
Spark’s primary abstraction is a distributed collection of items called a Dataset. Datasets can be created from Hadoop InputFormats (such as HDFS files) or by transforming other Datasets. Due to Python’s dynamic nature, we don’t need the Dataset to be strongly-typed in Python. As a result, all Datasets in Python are Dataset[Row], and we call it DataFrame
to be consistent with the data frame concept in Pandas and R. Let’s make a new DataFrame from the text of the README file in the Spark source directory:
You can get values from DataFrame directly, by calling some actions, or transform the DataFrame to get a new one. For more details, please read the API doc.
Now let’s transform this DataFrame to a new one. We call filter
to return a new DataFrame with a subset of the lines in the file.
We can chain together transformations and actions:
More on Dataset Operations
Dataset actions and transformations can be used for more complex computations. Let’s say we want to find the line with the most words:
This first maps a line to an integer value, creating a new Dataset. reduce
is called on that Dataset to find the largest word count. The arguments to map
and reduce
are Scala function literals (closures), and can use any language feature or Scala/Java library. For example, we can easily call functions declared elsewhere. We’ll use Math.max()
function to make this code easier to understand:
One common data flow pattern is MapReduce, as popularized by Hadoop. Spark can implement MapReduce flows easily:
Here, we call flatMap
to transform a Dataset of lines to a Dataset of words, and then combine groupByKey
and count
to compute the per-word counts in the file as a Dataset of (String, Long) pairs. To collect the word counts in our shell, we can call collect
:
This first maps a line to an integer value and aliases it as “numWords”, creating a new DataFrame. agg
is called on that DataFrame to find the largest word count. The arguments to select
and agg
are both Column, we can use df.colName
to get a column from a DataFrame. We can also import pyspark.sql.functions, which provides a lot of convenient functions to build a new Column from an old one.
One common data flow pattern is MapReduce, as popularized by Hadoop. Spark can implement MapReduce flows easily:
Here, we use the explode
function in select
, to transform a Dataset of lines to a Dataset of words, and then combine groupBy
and count
to compute the per-word counts in the file as a DataFrame of 2 columns: “word” and “count”. To collect the word counts in our shell, we can call collect
:
Caching
Spark also supports pulling data sets into a cluster-wide in-memory cache. This is very useful when data is accessed repeatedly, such as when querying a small “hot” dataset or when running an iterative algorithm like PageRank. As a simple example, let’s mark our linesWithSpark
dataset to be cached:
It may seem silly to use Spark to explore and cache a 100-line text file. The interesting part is
that these same functions can be used on very large data sets, even when they are striped across
tens or hundreds of nodes. You can also do this interactively by connecting bin/spark-shell
to
a cluster, as described in the RDD programming guide.
It may seem silly to use Spark to explore and cache a 100-line text file. The interesting part is
that these same functions can be used on very large data sets, even when they are striped across
tens or hundreds of nodes. You can also do this interactively by connecting bin/pyspark
to
a cluster, as described in the RDD programming guide.
Self-Contained Applications
Suppose we wish to write a self-contained application using the Spark API. We will walk through a simple application in Scala (with sbt), Java (with Maven), and Python (pip).
We’ll create a very simple Spark application in Scala–so simple, in fact, that it’s
named SimpleApp.scala
:
Note that applications should define a main()
method instead of extending scala.App
.
Subclasses of scala.App
may not work correctly.
This program just counts the number of lines containing ‘a’ and the number containing ‘b’ in the Spark README. Note that you’ll need to replace YOUR_SPARK_HOME with the location where Spark is installed. Unlike the earlier examples with the Spark shell, which initializes its own SparkSession, we initialize a SparkSession as part of the program.
We call SparkSession.builder
to construct a [[SparkSession]], then set the application name, and finally call getOrCreate
to get the [[SparkSession]] instance.
Our application depends on the Spark API, so we’ll also include an sbt configuration file,
build.sbt
, which explains that Spark is a dependency. This file also adds a repository that
Spark depends on:
For sbt to work correctly, we’ll need to layout SimpleApp.scala
and build.sbt
according to the typical directory structure. Once that is in place, we can create a JAR package
containing the application’s code, then use the spark-submit
script to run our program.
This example will use Maven to compile an application JAR, but any similar build system will work.
We’ll create a very simple Spark application, SimpleApp.java
:
This program just counts the number of lines containing ‘a’ and the number containing ‘b’ in the Spark README. Note that you’ll need to replace YOUR_SPARK_HOME with the location where Spark is installed. Unlike the earlier examples with the Spark shell, which initializes its own SparkSession, we initialize a SparkSession as part of the program.
To build the program, we also write a Maven pom.xml
file that lists Spark as a dependency.
Note that Spark artifacts are tagged with a Scala version.
We lay out these files according to the canonical Maven directory structure:
Now, we can package the application using Maven and execute it with ./bin/spark-submit
.
Now we will show how to write an application using the Python API (PySpark).
If you are building a packaged PySpark application or library you can add it to your setup.py file as:
As an example, we’ll create a simple Spark application, SimpleApp.py
:
This program just counts the number of lines containing ‘a’ and the number containing ‘b’ in a
text file.
Note that you’ll need to replace YOUR_SPARK_HOME with the location where Spark is installed.
As with the Scala and Java examples, we use a SparkSession to create Datasets.
For applications that use custom classes or third-party libraries, we can also add code
dependencies to spark-submit
through its --py-files
argument by packaging them into a
.zip file (see spark-submit --help
for details).
SimpleApp
is simple enough that we do not need to specify any code dependencies.
We can run this application using the bin/spark-submit
script:
If you have PySpark pip installed into your environment (e.g., pip install pyspark
), you can run your application with the regular Python interpreter or use the provided ‘spark-submit’ as you prefer.
Where to Go from Here
Congratulations on running your first Spark application!
- For an in-depth overview of the API, start with the RDD programming guide and the SQL programming guide, or see “Programming Guides” menu for other components.
- For running applications on a cluster, head to the deployment overview.
- Finally, Spark includes several samples in the
examples
directory (Scala, Java, Python, R). You can run them as follows: