public class LogisticRegressionModel extends GeneralizedLinearModel implements ClassificationModel, scala.Serializable, Saveable, PMMLExportable
param: weights Weights computed for every feature. param: intercept Intercept computed for this model. (Only used in Binary Logistic Regression. In Multinomial Logistic Regression, the intercepts will not be a single value, so the intercepts will be part of the weights.) param: numFeatures the dimension of the features. param: numClasses the number of possible outcomes for k classes classification problem in Multinomial Logistic Regression. By default, it is binary logistic regression so numClasses will be set to 2.
Constructor and Description |
---|
LogisticRegressionModel(Vector weights,
double intercept)
Constructs a
LogisticRegressionModel with weights and intercept for binary classification. |
LogisticRegressionModel(Vector weights,
double intercept,
int numFeatures,
int numClasses) |
Modifier and Type | Method and Description |
---|---|
LogisticRegressionModel |
clearThreshold()
Clears the threshold so that
predict will output raw prediction scores. |
scala.Option<Object> |
getThreshold()
Returns the threshold (if any) used for converting raw prediction scores into 0/1 predictions.
|
double |
intercept() |
static LogisticRegressionModel |
load(SparkContext sc,
String path) |
int |
numClasses() |
int |
numFeatures() |
static JavaRDD<Double> |
predict(JavaRDD<Vector> testData) |
static RDD<Object> |
predict(RDD<Vector> testData) |
static double |
predict(Vector testData) |
void |
save(SparkContext sc,
String path)
Save this model to the given path.
|
LogisticRegressionModel |
setThreshold(double threshold)
Sets the threshold that separates positive predictions from negative predictions
in Binary Logistic Regression.
|
static String |
toPMML() |
static void |
toPMML(java.io.OutputStream outputStream) |
static void |
toPMML(SparkContext sc,
String path) |
static void |
toPMML(String localPath) |
String |
toString()
Print a summary of the model.
|
Vector |
weights() |
predict, predict
predict, predict, predict
public LogisticRegressionModel(Vector weights, double intercept, int numFeatures, int numClasses)
public LogisticRegressionModel(Vector weights, double intercept)
LogisticRegressionModel
with weights and intercept for binary classification.weights
- (undocumented)intercept
- (undocumented)public static LogisticRegressionModel load(SparkContext sc, String path)
public static double predict(Vector testData)
public static void toPMML(String localPath)
public static void toPMML(SparkContext sc, String path)
public static void toPMML(java.io.OutputStream outputStream)
public static String toPMML()
public Vector weights()
weights
in class GeneralizedLinearModel
public double intercept()
intercept
in class GeneralizedLinearModel
public int numFeatures()
public int numClasses()
public LogisticRegressionModel setThreshold(double threshold)
threshold
- (undocumented)public scala.Option<Object> getThreshold()
public LogisticRegressionModel clearThreshold()
predict
will output raw prediction scores.
It is only used for binary classification.public void save(SparkContext sc, String path)
Saveable
This saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/
The model may be loaded using Loader.load
.
public String toString()
GeneralizedLinearModel
toString
in class GeneralizedLinearModel