Extracting, transforming and selecting features - spark.ml
This section covers algorithms for working with features, roughly divided into these groups:
- Extraction: Extracting features from “raw” data
- Transformation: Scaling, converting, or modifying features
- Selection: Selecting a subset from a larger set of features
Table of Contents
Feature Extractors
TF-IDF (HashingTF and IDF)
Term Frequency-Inverse Document Frequency (TF-IDF) is a common text pre-processing step. In Spark ML, TF-IDF is separate into two parts: TF (+hashing) and IDF.
TF: HashingTF
is a Transformer
which takes sets of terms and converts those sets into fixed-length feature vectors. In text processing, a “set of terms” might be a bag of words.
The algorithm combines Term Frequency (TF) counts with the hashing trick for dimensionality reduction.
IDF: IDF
is an Estimator
which fits on a dataset and produces an IDFModel
. The IDFModel
takes feature vectors (generally created from HashingTF
) and scales each column. Intuitively, it down-weights columns which appear frequently in a corpus.
Please refer to the MLlib user guide on TF-IDF for more details on Term Frequency and Inverse Document Frequency.
In the following code segment, we start with a set of sentences. We split each sentence into words using Tokenizer
. For each sentence (bag of words), we use HashingTF
to hash the sentence into a feature vector. We use IDF
to rescale the feature vectors; this generally improves performance when using text as features. Our feature vectors could then be passed to a learning algorithm.
Refer to the HashingTF Scala docs and the IDF Scala docs for more details on the API.
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
val sentenceData = sqlContext.createDataFrame(Seq(
(0, "Hi I heard about Spark"),
(0, "I wish Java could use case classes"),
(1, "Logistic regression models are neat")
)).toDF("label", "sentence")
val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val wordsData = tokenizer.transform(sentenceData)
val hashingTF = new HashingTF()
.setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)
val featurizedData = hashingTF.transform(wordsData)
val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
val idfModel = idf.fit(featurizedData)
val rescaledData = idfModel.transform(featurizedData)
rescaledData.select("features", "label").take(3).foreach(println)
Refer to the HashingTF Java docs and the IDF Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.ml.feature.HashingTF;
import org.apache.spark.ml.feature.IDF;
import org.apache.spark.ml.feature.IDFModel;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
RowFactory.create(0, "Hi I heard about Spark"),
RowFactory.create(0, "I wish Java could use case classes"),
RowFactory.create(1, "Logistic regression models are neat")
));
StructType schema = new StructType(new StructField[]{
new StructField("label", DataTypes.DoubleType, false, Metadata.empty()),
new StructField("sentence", DataTypes.StringType, false, Metadata.empty())
});
DataFrame sentenceData = sqlContext.createDataFrame(jrdd, schema);
Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words");
DataFrame wordsData = tokenizer.transform(sentenceData);
int numFeatures = 20;
HashingTF hashingTF = new HashingTF()
.setInputCol("words")
.setOutputCol("rawFeatures")
.setNumFeatures(numFeatures);
DataFrame featurizedData = hashingTF.transform(wordsData);
IDF idf = new IDF().setInputCol("rawFeatures").setOutputCol("features");
IDFModel idfModel = idf.fit(featurizedData);
DataFrame rescaledData = idfModel.transform(featurizedData);
for (Row r : rescaledData.select("features", "label").take(3)) {
Vector features = r.getAs(0);
Double label = r.getDouble(1);
System.out.println(features);
System.out.println(label);
}
Refer to the HashingTF Python docs and the IDF Python docs for more details on the API.
from pyspark.ml.feature import HashingTF, IDF, Tokenizer
sentenceData = sqlContext.createDataFrame([
(0, "Hi I heard about Spark"),
(0, "I wish Java could use case classes"),
(1, "Logistic regression models are neat")
], ["label", "sentence"])
tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
wordsData = tokenizer.transform(sentenceData)
hashingTF = HashingTF(inputCol="words", outputCol="rawFeatures", numFeatures=20)
featurizedData = hashingTF.transform(wordsData)
idf = IDF(inputCol="rawFeatures", outputCol="features")
idfModel = idf.fit(featurizedData)
rescaledData = idfModel.transform(featurizedData)
for features_label in rescaledData.select("features", "label").take(3):
print(features_label)
Word2Vec
Word2Vec
is an Estimator
which takes sequences of words representing documents and trains a
Word2VecModel
. The model maps each word to a unique fixed-size vector. The Word2VecModel
transforms each document into a vector using the average of all words in the document; this vector
can then be used for as features for prediction, document similarity calculations, etc.
Please refer to the MLlib user guide on Word2Vec for more
details.
In the following code segment, we start with a set of documents, each of which is represented as a sequence of words. For each document, we transform it into a feature vector. This feature vector could then be passed to a learning algorithm.
Refer to the Word2Vec Scala docs for more details on the API.
import org.apache.spark.ml.feature.Word2Vec
// Input data: Each row is a bag of words from a sentence or document.
val documentDF = sqlContext.createDataFrame(Seq(
"Hi I heard about Spark".split(" "),
"I wish Java could use case classes".split(" "),
"Logistic regression models are neat".split(" ")
).map(Tuple1.apply)).toDF("text")
// Learn a mapping from words to Vectors.
val word2Vec = new Word2Vec()
.setInputCol("text")
.setOutputCol("result")
.setVectorSize(3)
.setMinCount(0)
val model = word2Vec.fit(documentDF)
val result = model.transform(documentDF)
result.select("result").take(3).foreach(println)
Refer to the Word2Vec Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.ml.feature.Word2Vec;
import org.apache.spark.ml.feature.Word2VecModel;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.*;
// Input data: Each row is a bag of words from a sentence or document.
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
RowFactory.create(Arrays.asList("Hi I heard about Spark".split(" "))),
RowFactory.create(Arrays.asList("I wish Java could use case classes".split(" "))),
RowFactory.create(Arrays.asList("Logistic regression models are neat".split(" ")))
));
StructType schema = new StructType(new StructField[]{
new StructField("text", new ArrayType(DataTypes.StringType, true), false, Metadata.empty())
});
DataFrame documentDF = sqlContext.createDataFrame(jrdd, schema);
// Learn a mapping from words to Vectors.
Word2Vec word2Vec = new Word2Vec()
.setInputCol("text")
.setOutputCol("result")
.setVectorSize(3)
.setMinCount(0);
Word2VecModel model = word2Vec.fit(documentDF);
DataFrame result = model.transform(documentDF);
for (Row r : result.select("result").take(3)) {
System.out.println(r);
}
Refer to the Word2Vec Python docs for more details on the API.
from pyspark.ml.feature import Word2Vec
# Input data: Each row is a bag of words from a sentence or document.
documentDF = sqlContext.createDataFrame([
("Hi I heard about Spark".split(" "), ),
("I wish Java could use case classes".split(" "), ),
("Logistic regression models are neat".split(" "), )
], ["text"])
# Learn a mapping from words to Vectors.
word2Vec = Word2Vec(vectorSize=3, minCount=0, inputCol="text", outputCol="result")
model = word2Vec.fit(documentDF)
result = model.transform(documentDF)
for feature in result.select("result").take(3):
print(feature)
CountVectorizer
CountVectorizer
and CountVectorizerModel
aim to help convert a collection of text documents
to vectors of token counts. When an a-priori dictionary is not available, CountVectorizer
can
be used as an Estimator
to extract the vocabulary and generates a CountVectorizerModel
. The
model produces sparse representations for the documents over the vocabulary, which can then be
passed to other algorithms like LDA.
During the fitting process, CountVectorizer
will select the top vocabSize
words ordered by
term frequency across the corpus. An optional parameter “minDF” also affect the fitting process
by specifying the minimum number (or fraction if < 1.0) of documents a term must appear in to be
included in the vocabulary.
Examples
Assume that we have the following DataFrame with columns id
and texts
:
id | texts
----|----------
0 | Array("a", "b", "c")
1 | Array("a", "b", "b", "c", "a")
each row intexts
is a document of type Array[String].
Invoking fit of CountVectorizer
produces a CountVectorizerModel
with vocabulary (a, b, c),
then the output column “vector” after transformation contains:
id | texts | vector
----|---------------------------------|---------------
0 | Array("a", "b", "c") | (3,[0,1,2],[1.0,1.0,1.0])
1 | Array("a", "b", "b", "c", "a") | (3,[0,1,2],[2.0,2.0,1.0])
each vector represents the token counts of the document over the vocabulary.
Refer to the CountVectorizer Scala docs and the CountVectorizerModel Scala docs for more details on the API.
import org.apache.spark.ml.feature.{CountVectorizer, CountVectorizerModel}
val df = sqlContext.createDataFrame(Seq(
(0, Array("a", "b", "c")),
(1, Array("a", "b", "b", "c", "a"))
)).toDF("id", "words")
// fit a CountVectorizerModel from the corpus
val cvModel: CountVectorizerModel = new CountVectorizer()
.setInputCol("words")
.setOutputCol("features")
.setVocabSize(3)
.setMinDF(2)
.fit(df)
// alternatively, define CountVectorizerModel with a-priori vocabulary
val cvm = new CountVectorizerModel(Array("a", "b", "c"))
.setInputCol("words")
.setOutputCol("features")
cvModel.transform(df).select("features").show()
Refer to the CountVectorizer Java docs and the CountVectorizerModel Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.ml.feature.CountVectorizer;
import org.apache.spark.ml.feature.CountVectorizerModel;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.*;
// Input data: Each row is a bag of words from a sentence or document.
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
RowFactory.create(Arrays.asList("a", "b", "c")),
RowFactory.create(Arrays.asList("a", "b", "b", "c", "a"))
));
StructType schema = new StructType(new StructField [] {
new StructField("text", new ArrayType(DataTypes.StringType, true), false, Metadata.empty())
});
DataFrame df = sqlContext.createDataFrame(jrdd, schema);
// fit a CountVectorizerModel from the corpus
CountVectorizerModel cvModel = new CountVectorizer()
.setInputCol("text")
.setOutputCol("feature")
.setVocabSize(3)
.setMinDF(2)
.fit(df);
// alternatively, define CountVectorizerModel with a-priori vocabulary
CountVectorizerModel cvm = new CountVectorizerModel(new String[]{"a", "b", "c"})
.setInputCol("text")
.setOutputCol("feature");
cvModel.transform(df).show();
Feature Transformers
Tokenizer
Tokenization is the process of taking text (such as a sentence) and breaking it into individual terms (usually words). A simple Tokenizer class provides this functionality. The example below shows how to split sentences into sequences of words.
RegexTokenizer allows more advanced tokenization based on regular expression (regex) matching. By default, the parameter “pattern” (regex, default: \s+) is used as delimiters to split the input text. Alternatively, users can set parameter “gaps” to false indicating the regex “pattern” denotes “tokens” rather than splitting gaps, and find all matching occurrences as the tokenization result.
Refer to the Tokenizer Scala docs and the RegexTokenizer Scala docs for more details on the API.
import org.apache.spark.ml.feature.{RegexTokenizer, Tokenizer}
val sentenceDataFrame = sqlContext.createDataFrame(Seq(
(0, "Hi I heard about Spark"),
(1, "I wish Java could use case classes"),
(2, "Logistic,regression,models,are,neat")
)).toDF("label", "sentence")
val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val regexTokenizer = new RegexTokenizer()
.setInputCol("sentence")
.setOutputCol("words")
.setPattern("\\W") // alternatively .setPattern("\\w+").setGaps(false)
val tokenized = tokenizer.transform(sentenceDataFrame)
tokenized.select("words", "label").take(3).foreach(println)
val regexTokenized = regexTokenizer.transform(sentenceDataFrame)
regexTokenized.select("words", "label").take(3).foreach(println)
Refer to the Tokenizer Java docs and the RegexTokenizer Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.RegexTokenizer;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
RowFactory.create(0, "Hi I heard about Spark"),
RowFactory.create(1, "I wish Java could use case classes"),
RowFactory.create(2, "Logistic,regression,models,are,neat")
));
StructType schema = new StructType(new StructField[]{
new StructField("label", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("sentence", DataTypes.StringType, false, Metadata.empty())
});
DataFrame sentenceDataFrame = sqlContext.createDataFrame(jrdd, schema);
Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words");
DataFrame wordsDataFrame = tokenizer.transform(sentenceDataFrame);
for (Row r : wordsDataFrame.select("words", "label"). take(3)) {
java.util.List<String> words = r.getList(0);
for (String word : words) System.out.print(word + " ");
System.out.println();
}
RegexTokenizer regexTokenizer = new RegexTokenizer()
.setInputCol("sentence")
.setOutputCol("words")
.setPattern("\\W"); // alternatively .setPattern("\\w+").setGaps(false);
Refer to the Tokenizer Python docs and the the RegexTokenizer Python docs for more details on the API.
from pyspark.ml.feature import Tokenizer, RegexTokenizer
sentenceDataFrame = sqlContext.createDataFrame([
(0, "Hi I heard about Spark"),
(1, "I wish Java could use case classes"),
(2, "Logistic,regression,models,are,neat")
], ["label", "sentence"])
tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
wordsDataFrame = tokenizer.transform(sentenceDataFrame)
for words_label in wordsDataFrame.select("words", "label").take(3):
print(words_label)
regexTokenizer = RegexTokenizer(inputCol="sentence", outputCol="words", pattern="\\W")
# alternatively, pattern="\\w+", gaps(False)
StopWordsRemover
Stop words are words which should be excluded from the input, typically because the words appear frequently and don’t carry as much meaning.
StopWordsRemover
takes as input a sequence of strings (e.g. the output
of a Tokenizer) and drops all the stop
words from the input sequences. The list of stopwords is specified by
the stopWords
parameter. We provide a list of stop
words by
default, accessible by calling getStopWords
on a newly instantiated
StopWordsRemover
instance. A boolean parameter caseSensitive
indicates
if the matches should be case sensitive (false by default).
Examples
Assume that we have the following DataFrame with columns id
and raw
:
id | raw
----|----------
0 | [I, saw, the, red, baloon]
1 | [Mary, had, a, little, lamb]
Applying StopWordsRemover
with raw
as the input column and filtered
as the output
column, we should get the following:
id | raw | filtered
----|-----------------------------|--------------------
0 | [I, saw, the, red, baloon] | [saw, red, baloon]
1 | [Mary, had, a, little, lamb]|[Mary, little, lamb]
In filtered
, the stop words “I”, “the”, “had”, and “a” have been
filtered out.
Refer to the StopWordsRemover Scala docs for more details on the API.
import org.apache.spark.ml.feature.StopWordsRemover
val remover = new StopWordsRemover()
.setInputCol("raw")
.setOutputCol("filtered")
val dataSet = sqlContext.createDataFrame(Seq(
(0, Seq("I", "saw", "the", "red", "baloon")),
(1, Seq("Mary", "had", "a", "little", "lamb"))
)).toDF("id", "raw")
remover.transform(dataSet).show()
Refer to the StopWordsRemover Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.StopWordsRemover;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
StopWordsRemover remover = new StopWordsRemover()
.setInputCol("raw")
.setOutputCol("filtered");
JavaRDD<Row> rdd = jsc.parallelize(Arrays.asList(
RowFactory.create(Arrays.asList("I", "saw", "the", "red", "baloon")),
RowFactory.create(Arrays.asList("Mary", "had", "a", "little", "lamb"))
));
StructType schema = new StructType(new StructField[]{
new StructField(
"raw", DataTypes.createArrayType(DataTypes.StringType), false, Metadata.empty())
});
DataFrame dataset = jsql.createDataFrame(rdd, schema);
remover.transform(dataset).show();
Refer to the StopWordsRemover Python docs for more details on the API.
from pyspark.ml.feature import StopWordsRemover
sentenceData = sqlContext.createDataFrame([
(0, ["I", "saw", "the", "red", "baloon"]),
(1, ["Mary", "had", "a", "little", "lamb"])
], ["label", "raw"])
remover = StopWordsRemover(inputCol="raw", outputCol="filtered")
remover.transform(sentenceData).show(truncate=False)
$n$-gram
An n-gram is a sequence of $n$ tokens (typically words) for some integer $n$. The NGram
class can be used to transform input features into $n$-grams.
NGram
takes as input a sequence of strings (e.g. the output of a Tokenizer). The parameter n
is used to determine the number of terms in each $n$-gram. The output will consist of a sequence of $n$-grams where each $n$-gram is represented by a space-delimited string of $n$ consecutive words. If the input sequence contains fewer than n
strings, no output is produced.
Refer to the NGram Scala docs for more details on the API.
import org.apache.spark.ml.feature.NGram
val wordDataFrame = sqlContext.createDataFrame(Seq(
(0, Array("Hi", "I", "heard", "about", "Spark")),
(1, Array("I", "wish", "Java", "could", "use", "case", "classes")),
(2, Array("Logistic", "regression", "models", "are", "neat"))
)).toDF("label", "words")
val ngram = new NGram().setInputCol("words").setOutputCol("ngrams")
val ngramDataFrame = ngram.transform(wordDataFrame)
ngramDataFrame.take(3).map(_.getAs[Stream[String]]("ngrams").toList).foreach(println)
Refer to the NGram Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.NGram;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
RowFactory.create(0.0, Arrays.asList("Hi", "I", "heard", "about", "Spark")),
RowFactory.create(1.0, Arrays.asList("I", "wish", "Java", "could", "use", "case", "classes")),
RowFactory.create(2.0, Arrays.asList("Logistic", "regression", "models", "are", "neat"))
));
StructType schema = new StructType(new StructField[]{
new StructField("label", DataTypes.DoubleType, false, Metadata.empty()),
new StructField(
"words", DataTypes.createArrayType(DataTypes.StringType), false, Metadata.empty())
});
DataFrame wordDataFrame = sqlContext.createDataFrame(jrdd, schema);
NGram ngramTransformer = new NGram().setInputCol("words").setOutputCol("ngrams");
DataFrame ngramDataFrame = ngramTransformer.transform(wordDataFrame);
for (Row r : ngramDataFrame.select("ngrams", "label").take(3)) {
java.util.List<String> ngrams = r.getList(0);
for (String ngram : ngrams) System.out.print(ngram + " --- ");
System.out.println();
}
Refer to the NGram Python docs for more details on the API.
from pyspark.ml.feature import NGram
wordDataFrame = sqlContext.createDataFrame([
(0, ["Hi", "I", "heard", "about", "Spark"]),
(1, ["I", "wish", "Java", "could", "use", "case", "classes"]),
(2, ["Logistic", "regression", "models", "are", "neat"])
], ["label", "words"])
ngram = NGram(inputCol="words", outputCol="ngrams")
ngramDataFrame = ngram.transform(wordDataFrame)
for ngrams_label in ngramDataFrame.select("ngrams", "label").take(3):
print(ngrams_label)
Binarizer
Binarization is the process of thresholding numerical features to binary (0/1) features.
Binarizer
takes the common parameters inputCol
and outputCol
, as well as the threshold
for binarization. Feature values greater than the threshold are binarized to 1.0; values equal to or less than the threshold are binarized to 0.0.
Refer to the Binarizer Scala docs for more details on the API.
import org.apache.spark.ml.feature.Binarizer
val data = Array((0, 0.1), (1, 0.8), (2, 0.2))
val dataFrame: DataFrame = sqlContext.createDataFrame(data).toDF("label", "feature")
val binarizer: Binarizer = new Binarizer()
.setInputCol("feature")
.setOutputCol("binarized_feature")
.setThreshold(0.5)
val binarizedDataFrame = binarizer.transform(dataFrame)
val binarizedFeatures = binarizedDataFrame.select("binarized_feature")
binarizedFeatures.collect().foreach(println)
Refer to the Binarizer Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.Binarizer;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
RowFactory.create(0, 0.1),
RowFactory.create(1, 0.8),
RowFactory.create(2, 0.2)
));
StructType schema = new StructType(new StructField[]{
new StructField("label", DataTypes.DoubleType, false, Metadata.empty()),
new StructField("feature", DataTypes.DoubleType, false, Metadata.empty())
});
DataFrame continuousDataFrame = jsql.createDataFrame(jrdd, schema);
Binarizer binarizer = new Binarizer()
.setInputCol("feature")
.setOutputCol("binarized_feature")
.setThreshold(0.5);
DataFrame binarizedDataFrame = binarizer.transform(continuousDataFrame);
DataFrame binarizedFeatures = binarizedDataFrame.select("binarized_feature");
for (Row r : binarizedFeatures.collect()) {
Double binarized_value = r.getDouble(0);
System.out.println(binarized_value);
}
Refer to the Binarizer Python docs for more details on the API.
from pyspark.ml.feature import Binarizer
continuousDataFrame = sqlContext.createDataFrame([
(0, 0.1),
(1, 0.8),
(2, 0.2)
], ["label", "feature"])
binarizer = Binarizer(threshold=0.5, inputCol="feature", outputCol="binarized_feature")
binarizedDataFrame = binarizer.transform(continuousDataFrame)
binarizedFeatures = binarizedDataFrame.select("binarized_feature")
for binarized_feature, in binarizedFeatures.collect():
print(binarized_feature)
PCA
PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. A PCA class trains a model to project vectors to a low-dimensional space using PCA. The example below shows how to project 5-dimensional feature vectors into 3-dimensional principal components.
Refer to the PCA Scala docs for more details on the API.
import org.apache.spark.ml.feature.PCA
import org.apache.spark.mllib.linalg.Vectors
val data = Array(
Vectors.sparse(5, Seq((1, 1.0), (3, 7.0))),
Vectors.dense(2.0, 0.0, 3.0, 4.0, 5.0),
Vectors.dense(4.0, 0.0, 0.0, 6.0, 7.0)
)
val df = sqlContext.createDataFrame(data.map(Tuple1.apply)).toDF("features")
val pca = new PCA()
.setInputCol("features")
.setOutputCol("pcaFeatures")
.setK(3)
.fit(df)
val pcaDF = pca.transform(df)
val result = pcaDF.select("pcaFeatures")
result.show()
Refer to the PCA Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.PCA;
import org.apache.spark.ml.feature.PCAModel;
import org.apache.spark.mllib.linalg.VectorUDT;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
JavaRDD<Row> data = jsc.parallelize(Arrays.asList(
RowFactory.create(Vectors.sparse(5, new int[]{1, 3}, new double[]{1.0, 7.0})),
RowFactory.create(Vectors.dense(2.0, 0.0, 3.0, 4.0, 5.0)),
RowFactory.create(Vectors.dense(4.0, 0.0, 0.0, 6.0, 7.0))
));
StructType schema = new StructType(new StructField[]{
new StructField("features", new VectorUDT(), false, Metadata.empty()),
});
DataFrame df = jsql.createDataFrame(data, schema);
PCAModel pca = new PCA()
.setInputCol("features")
.setOutputCol("pcaFeatures")
.setK(3)
.fit(df);
DataFrame result = pca.transform(df).select("pcaFeatures");
result.show();
Refer to the PCA Python docs for more details on the API.
from pyspark.ml.feature import PCA
from pyspark.mllib.linalg import Vectors
data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),),
(Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),
(Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]
df = sqlContext.createDataFrame(data, ["features"])
pca = PCA(k=3, inputCol="features", outputCol="pcaFeatures")
model = pca.fit(df)
result = model.transform(df).select("pcaFeatures")
result.show(truncate=False)
PolynomialExpansion
Polynomial expansion is the process of expanding your features into a polynomial space, which is formulated by an n-degree combination of original dimensions. A PolynomialExpansion class provides this functionality. The example below shows how to expand your features into a 3-degree polynomial space.
Refer to the PolynomialExpansion Scala docs for more details on the API.
import org.apache.spark.ml.feature.PolynomialExpansion
import org.apache.spark.mllib.linalg.Vectors
val data = Array(
Vectors.dense(-2.0, 2.3),
Vectors.dense(0.0, 0.0),
Vectors.dense(0.6, -1.1)
)
val df = sqlContext.createDataFrame(data.map(Tuple1.apply)).toDF("features")
val polynomialExpansion = new PolynomialExpansion()
.setInputCol("features")
.setOutputCol("polyFeatures")
.setDegree(3)
val polyDF = polynomialExpansion.transform(df)
polyDF.select("polyFeatures").take(3).foreach(println)
Refer to the PolynomialExpansion Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.PolynomialExpansion;
import org.apache.spark.mllib.linalg.VectorUDT;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
PolynomialExpansion polyExpansion = new PolynomialExpansion()
.setInputCol("features")
.setOutputCol("polyFeatures")
.setDegree(3);
JavaRDD<Row> data = jsc.parallelize(Arrays.asList(
RowFactory.create(Vectors.dense(-2.0, 2.3)),
RowFactory.create(Vectors.dense(0.0, 0.0)),
RowFactory.create(Vectors.dense(0.6, -1.1))
));
StructType schema = new StructType(new StructField[]{
new StructField("features", new VectorUDT(), false, Metadata.empty()),
});
DataFrame df = jsql.createDataFrame(data, schema);
DataFrame polyDF = polyExpansion.transform(df);
Row[] row = polyDF.select("polyFeatures").take(3);
for (Row r : row) {
System.out.println(r.get(0));
}
Refer to the PolynomialExpansion Python docs for more details on the API.
from pyspark.ml.feature import PolynomialExpansion
from pyspark.mllib.linalg import Vectors
df = sqlContext\
.createDataFrame([(Vectors.dense([-2.0, 2.3]),),
(Vectors.dense([0.0, 0.0]),),
(Vectors.dense([0.6, -1.1]),)],
["features"])
px = PolynomialExpansion(degree=2, inputCol="features", outputCol="polyFeatures")
polyDF = px.transform(df)
for expanded in polyDF.select("polyFeatures").take(3):
print(expanded)
Discrete Cosine Transform (DCT)
The Discrete Cosine Transform transforms a length $N$ real-valued sequence in the time domain into another length $N$ real-valued sequence in the frequency domain. A DCT class provides this functionality, implementing the DCT-II and scaling the result by $1/\sqrt{2}$ such that the representing matrix for the transform is unitary. No shift is applied to the transformed sequence (e.g. the $0$th element of the transformed sequence is the $0$th DCT coefficient and not the $N/2$th).
Refer to the DCT Scala docs for more details on the API.
import org.apache.spark.ml.feature.DCT
import org.apache.spark.mllib.linalg.Vectors
val data = Seq(
Vectors.dense(0.0, 1.0, -2.0, 3.0),
Vectors.dense(-1.0, 2.0, 4.0, -7.0),
Vectors.dense(14.0, -2.0, -5.0, 1.0))
val df = sqlContext.createDataFrame(data.map(Tuple1.apply)).toDF("features")
val dct = new DCT()
.setInputCol("features")
.setOutputCol("featuresDCT")
.setInverse(false)
val dctDf = dct.transform(df)
dctDf.select("featuresDCT").show(3)
Refer to the DCT Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.DCT;
import org.apache.spark.mllib.linalg.VectorUDT;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
JavaRDD<Row> data = jsc.parallelize(Arrays.asList(
RowFactory.create(Vectors.dense(0.0, 1.0, -2.0, 3.0)),
RowFactory.create(Vectors.dense(-1.0, 2.0, 4.0, -7.0)),
RowFactory.create(Vectors.dense(14.0, -2.0, -5.0, 1.0))
));
StructType schema = new StructType(new StructField[]{
new StructField("features", new VectorUDT(), false, Metadata.empty()),
});
DataFrame df = jsql.createDataFrame(data, schema);
DCT dct = new DCT()
.setInputCol("features")
.setOutputCol("featuresDCT")
.setInverse(false);
DataFrame dctDf = dct.transform(df);
dctDf.select("featuresDCT").show(3);
StringIndexer
StringIndexer
encodes a string column of labels to a column of label indices.
The indices are in [0, numLabels)
, ordered by label frequencies.
So the most frequent label gets index 0
.
If the input column is numeric, we cast it to string and index the string
values. When downstream pipeline components such as Estimator
or
Transformer
make use of this string-indexed label, you must set the input
column of the component to this string-indexed column name. In many cases,
you can set the input column with setInputCol
.
Examples
Assume that we have the following DataFrame with columns id
and category
:
id | category
----|----------
0 | a
1 | b
2 | c
3 | a
4 | a
5 | c
category
is a string column with three labels: “a”, “b”, and “c”.
Applying StringIndexer
with category
as the input column and categoryIndex
as the output
column, we should get the following:
id | category | categoryIndex
----|----------|---------------
0 | a | 0.0
1 | b | 2.0
2 | c | 1.0
3 | a | 0.0
4 | a | 0.0
5 | c | 1.0
“a” gets index 0
because it is the most frequent, followed by “c” with index 1
and “b” with
index 2
.
Additionaly, there are two strategies regarding how StringIndexer
will handle
unseen labels when you have fit a StringIndexer
on one dataset and then use it
to transform another:
- throw an exception (which is the default)
- skip the row containing the unseen label entirely
Examples
Let’s go back to our previous example but this time reuse our previously defined
StringIndexer
on the following dataset:
id | category
----|----------
0 | a
1 | b
2 | c
3 | d
If you’ve not set how StringIndexer
handles unseen labels or set it to
“error”, an exception will be thrown.
However, if you had called setHandleInvalid("skip")
, the following dataset
will be generated:
id | category | categoryIndex
----|----------|---------------
0 | a | 0.0
1 | b | 2.0
2 | c | 1.0
Notice that the row containing “d” does not appear.
Refer to the StringIndexer Scala docs for more details on the API.
import org.apache.spark.ml.feature.StringIndexer
val df = sqlContext.createDataFrame(
Seq((0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c"))
).toDF("id", "category")
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex")
val indexed = indexer.fit(df).transform(df)
indexed.show()
Refer to the StringIndexer Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.StringIndexer;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import static org.apache.spark.sql.types.DataTypes.*;
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
RowFactory.create(0, "a"),
RowFactory.create(1, "b"),
RowFactory.create(2, "c"),
RowFactory.create(3, "a"),
RowFactory.create(4, "a"),
RowFactory.create(5, "c")
));
StructType schema = new StructType(new StructField[]{
createStructField("id", IntegerType, false),
createStructField("category", StringType, false)
});
DataFrame df = sqlContext.createDataFrame(jrdd, schema);
StringIndexer indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex");
DataFrame indexed = indexer.fit(df).transform(df);
indexed.show();
Refer to the StringIndexer Python docs for more details on the API.
from pyspark.ml.feature import StringIndexer
df = sqlContext.createDataFrame(
[(0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c")],
["id", "category"])
indexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
indexed = indexer.fit(df).transform(df)
indexed.show()
IndexToString
Symmetrically to StringIndexer
, IndexToString
maps a column of label indices
back to a column containing the original labels as strings. The common use case
is to produce indices from labels with StringIndexer
, train a model with those
indices and retrieve the original labels from the column of predicted indices
with IndexToString
. However, you are free to supply your own labels.
Examples
Building on the StringIndexer
example, let’s assume we have the following
DataFrame with columns id
and categoryIndex
:
id | categoryIndex
----|---------------
0 | 0.0
1 | 2.0
2 | 1.0
3 | 0.0
4 | 0.0
5 | 1.0
Applying IndexToString
with categoryIndex
as the input column,
originalCategory
as the output column, we are able to retrieve our original
labels (they will be inferred from the columns’ metadata):
id | categoryIndex | originalCategory
----|---------------|-----------------
0 | 0.0 | a
1 | 2.0 | b
2 | 1.0 | c
3 | 0.0 | a
4 | 0.0 | a
5 | 1.0 | c
Refer to the IndexToString Scala docs for more details on the API.
import org.apache.spark.ml.feature.{StringIndexer, IndexToString}
val df = sqlContext.createDataFrame(Seq(
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")
)).toDF("id", "category")
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex")
.fit(df)
val indexed = indexer.transform(df)
val converter = new IndexToString()
.setInputCol("categoryIndex")
.setOutputCol("originalCategory")
val converted = converter.transform(indexed)
converted.select("id", "originalCategory").show()
Refer to the IndexToString Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.ml.feature.IndexToString;
import org.apache.spark.ml.feature.StringIndexer;
import org.apache.spark.ml.feature.StringIndexerModel;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
RowFactory.create(0, "a"),
RowFactory.create(1, "b"),
RowFactory.create(2, "c"),
RowFactory.create(3, "a"),
RowFactory.create(4, "a"),
RowFactory.create(5, "c")
));
StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("category", DataTypes.StringType, false, Metadata.empty())
});
DataFrame df = sqlContext.createDataFrame(jrdd, schema);
StringIndexerModel indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex")
.fit(df);
DataFrame indexed = indexer.transform(df);
IndexToString converter = new IndexToString()
.setInputCol("categoryIndex")
.setOutputCol("originalCategory");
DataFrame converted = converter.transform(indexed);
converted.select("id", "originalCategory").show();
Refer to the IndexToString Python docs for more details on the API.
from pyspark.ml.feature import IndexToString, StringIndexer
df = sqlContext.createDataFrame(
[(0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c")],
["id", "category"])
stringIndexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
model = stringIndexer.fit(df)
indexed = model.transform(df)
converter = IndexToString(inputCol="categoryIndex", outputCol="originalCategory")
converted = converter.transform(indexed)
converted.select("id", "originalCategory").show()
OneHotEncoder
One-hot encoding maps a column of label indices to a column of binary vectors, with at most a single one-value. This encoding allows algorithms which expect continuous features, such as Logistic Regression, to use categorical features
Refer to the OneHotEncoder Scala docs for more details on the API.
import org.apache.spark.ml.feature.{OneHotEncoder, StringIndexer}
val df = sqlContext.createDataFrame(Seq(
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")
)).toDF("id", "category")
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex")
.fit(df)
val indexed = indexer.transform(df)
val encoder = new OneHotEncoder()
.setInputCol("categoryIndex")
.setOutputCol("categoryVec")
val encoded = encoder.transform(indexed)
encoded.select("id", "categoryVec").show()
Refer to the OneHotEncoder Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.OneHotEncoder;
import org.apache.spark.ml.feature.StringIndexer;
import org.apache.spark.ml.feature.StringIndexerModel;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
RowFactory.create(0, "a"),
RowFactory.create(1, "b"),
RowFactory.create(2, "c"),
RowFactory.create(3, "a"),
RowFactory.create(4, "a"),
RowFactory.create(5, "c")
));
StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.DoubleType, false, Metadata.empty()),
new StructField("category", DataTypes.StringType, false, Metadata.empty())
});
DataFrame df = sqlContext.createDataFrame(jrdd, schema);
StringIndexerModel indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex")
.fit(df);
DataFrame indexed = indexer.transform(df);
OneHotEncoder encoder = new OneHotEncoder()
.setInputCol("categoryIndex")
.setOutputCol("categoryVec");
DataFrame encoded = encoder.transform(indexed);
encoded.select("id", "categoryVec").show();
Refer to the OneHotEncoder Python docs for more details on the API.
from pyspark.ml.feature import OneHotEncoder, StringIndexer
df = sqlContext.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")
], ["id", "category"])
stringIndexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
model = stringIndexer.fit(df)
indexed = model.transform(df)
encoder = OneHotEncoder(dropLast=False, inputCol="categoryIndex", outputCol="categoryVec")
encoded = encoder.transform(indexed)
encoded.select("id", "categoryVec").show()
VectorIndexer
VectorIndexer
helps index categorical features in datasets of Vector
s.
It can both automatically decide which features are categorical and convert original values to category indices. Specifically, it does the following:
- Take an input column of type Vector and a parameter
maxCategories
. - Decide which features should be categorical based on the number of distinct values, where features with at most
maxCategories
are declared categorical. - Compute 0-based category indices for each categorical feature.
- Index categorical features and transform original feature values to indices.
Indexing categorical features allows algorithms such as Decision Trees and Tree Ensembles to treat categorical features appropriately, improving performance.
In the example below, we read in a dataset of labeled points and then use VectorIndexer
to decide which features should be treated as categorical. We transform the categorical feature values to their indices. This transformed data could then be passed to algorithms such as DecisionTreeRegressor
that handle categorical features.
Refer to the VectorIndexer Scala docs for more details on the API.
import org.apache.spark.ml.feature.VectorIndexer
val data = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
val indexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexed")
.setMaxCategories(10)
val indexerModel = indexer.fit(data)
val categoricalFeatures: Set[Int] = indexerModel.categoryMaps.keys.toSet
println(s"Chose ${categoricalFeatures.size} categorical features: " +
categoricalFeatures.mkString(", "))
// Create new column "indexed" with categorical values transformed to indices
val indexedData = indexerModel.transform(data)
indexedData.show()
Refer to the VectorIndexer Java docs for more details on the API.
import java.util.Map;
import org.apache.spark.ml.feature.VectorIndexer;
import org.apache.spark.ml.feature.VectorIndexerModel;
import org.apache.spark.sql.DataFrame;
DataFrame data = jsql.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt");
VectorIndexer indexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexed")
.setMaxCategories(10);
VectorIndexerModel indexerModel = indexer.fit(data);
Map<Integer, Map<Double, Integer>> categoryMaps = indexerModel.javaCategoryMaps();
System.out.print("Chose " + categoryMaps.size() + " categorical features:");
for (Integer feature : categoryMaps.keySet()) {
System.out.print(" " + feature);
}
System.out.println();
// Create new column "indexed" with categorical values transformed to indices
DataFrame indexedData = indexerModel.transform(data);
indexedData.show();
Refer to the VectorIndexer Python docs for more details on the API.
from pyspark.ml.feature import VectorIndexer
data = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
indexer = VectorIndexer(inputCol="features", outputCol="indexed", maxCategories=10)
indexerModel = indexer.fit(data)
# Create new column "indexed" with categorical values transformed to indices
indexedData = indexerModel.transform(data)
indexedData.show()
Normalizer
Normalizer
is a Transformer
which transforms a dataset of Vector
rows, normalizing each Vector
to have unit norm. It takes parameter p
, which specifies the p-norm used for normalization. ($p = 2$ by default.) This normalization can help standardize your input data and improve the behavior of learning algorithms.
The following example demonstrates how to load a dataset in libsvm format and then normalize each row to have unit $L^2$ norm and unit $L^\infty$ norm.
Refer to the Normalizer Scala docs for more details on the API.
import org.apache.spark.ml.feature.Normalizer
val dataFrame = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
// Normalize each Vector using $L^1$ norm.
val normalizer = new Normalizer()
.setInputCol("features")
.setOutputCol("normFeatures")
.setP(1.0)
val l1NormData = normalizer.transform(dataFrame)
l1NormData.show()
// Normalize each Vector using $L^\infty$ norm.
val lInfNormData = normalizer.transform(dataFrame, normalizer.p -> Double.PositiveInfinity)
lInfNormData.show()
Refer to the Normalizer Java docs for more details on the API.
import org.apache.spark.ml.feature.Normalizer;
import org.apache.spark.sql.DataFrame;
DataFrame dataFrame = jsql.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt");
// Normalize each Vector using $L^1$ norm.
Normalizer normalizer = new Normalizer()
.setInputCol("features")
.setOutputCol("normFeatures")
.setP(1.0);
DataFrame l1NormData = normalizer.transform(dataFrame);
l1NormData.show();
// Normalize each Vector using $L^\infty$ norm.
DataFrame lInfNormData =
normalizer.transform(dataFrame, normalizer.p().w(Double.POSITIVE_INFINITY));
lInfNormData.show();
Refer to the Normalizer Python docs for more details on the API.
from pyspark.ml.feature import Normalizer
dataFrame = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
# Normalize each Vector using $L^1$ norm.
normalizer = Normalizer(inputCol="features", outputCol="normFeatures", p=1.0)
l1NormData = normalizer.transform(dataFrame)
l1NormData.show()
# Normalize each Vector using $L^\infty$ norm.
lInfNormData = normalizer.transform(dataFrame, {normalizer.p: float("inf")})
lInfNormData.show()
StandardScaler
StandardScaler
transforms a dataset of Vector
rows, normalizing each feature to have unit standard deviation and/or zero mean. It takes parameters:
withStd
: True by default. Scales the data to unit standard deviation.withMean
: False by default. Centers the data with mean before scaling. It will build a dense output, so this does not work on sparse input and will raise an exception.
StandardScaler
is an Estimator
which can be fit
on a dataset to produce a StandardScalerModel
; this amounts to computing summary statistics. The model can then transform a Vector
column in a dataset to have unit standard deviation and/or zero mean features.
Note that if the standard deviation of a feature is zero, it will return default 0.0
value in the Vector
for that feature.
The following example demonstrates how to load a dataset in libsvm format and then normalize each feature to have unit standard deviation.
Refer to the StandardScaler Scala docs for more details on the API.
import org.apache.spark.ml.feature.StandardScaler
val dataFrame = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
val scaler = new StandardScaler()
.setInputCol("features")
.setOutputCol("scaledFeatures")
.setWithStd(true)
.setWithMean(false)
// Compute summary statistics by fitting the StandardScaler.
val scalerModel = scaler.fit(dataFrame)
// Normalize each feature to have unit standard deviation.
val scaledData = scalerModel.transform(dataFrame)
scaledData.show()
Refer to the StandardScaler Java docs for more details on the API.
import org.apache.spark.ml.feature.StandardScaler;
import org.apache.spark.ml.feature.StandardScalerModel;
import org.apache.spark.sql.DataFrame;
DataFrame dataFrame = jsql.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt");
StandardScaler scaler = new StandardScaler()
.setInputCol("features")
.setOutputCol("scaledFeatures")
.setWithStd(true)
.setWithMean(false);
// Compute summary statistics by fitting the StandardScaler
StandardScalerModel scalerModel = scaler.fit(dataFrame);
// Normalize each feature to have unit standard deviation.
DataFrame scaledData = scalerModel.transform(dataFrame);
scaledData.show();
Refer to the StandardScaler Python docs for more details on the API.
from pyspark.ml.feature import StandardScaler
dataFrame = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures",
withStd=True, withMean=False)
# Compute summary statistics by fitting the StandardScaler
scalerModel = scaler.fit(dataFrame)
# Normalize each feature to have unit standard deviation.
scaledData = scalerModel.transform(dataFrame)
scaledData.show()
MinMaxScaler
MinMaxScaler
transforms a dataset of Vector
rows, rescaling each feature to a specific range (often [0, 1]). It takes parameters:
min
: 0.0 by default. Lower bound after transformation, shared by all features.max
: 1.0 by default. Upper bound after transformation, shared by all features.
MinMaxScaler
computes summary statistics on a data set and produces a MinMaxScalerModel
. The model can then transform each feature individually such that it is in the given range.
The rescaled value for a feature E is calculated as,
\begin{equation}
Rescaled(e_i) = \frac{e_i - E_{min}}{E_{max} - E_{min}} * (max - min) + min
\end{equation}
For the case E_{max} == E_{min}
, Rescaled(e_i) = 0.5 * (max + min)
Note that since zero values will probably be transformed to non-zero values, output of the transformer will be DenseVector even for sparse input.
The following example demonstrates how to load a dataset in libsvm format and then rescale each feature to [0, 1].
Refer to the MinMaxScaler Scala docs and the MinMaxScalerModel Scala docs for more details on the API.
import org.apache.spark.ml.feature.MinMaxScaler
val dataFrame = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
val scaler = new MinMaxScaler()
.setInputCol("features")
.setOutputCol("scaledFeatures")
// Compute summary statistics and generate MinMaxScalerModel
val scalerModel = scaler.fit(dataFrame)
// rescale each feature to range [min, max].
val scaledData = scalerModel.transform(dataFrame)
scaledData.show()
Refer to the MinMaxScaler Java docs and the MinMaxScalerModel Java docs for more details on the API.
import org.apache.spark.ml.feature.MinMaxScaler;
import org.apache.spark.ml.feature.MinMaxScalerModel;
import org.apache.spark.sql.DataFrame;
DataFrame dataFrame = jsql.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt");
MinMaxScaler scaler = new MinMaxScaler()
.setInputCol("features")
.setOutputCol("scaledFeatures");
// Compute summary statistics and generate MinMaxScalerModel
MinMaxScalerModel scalerModel = scaler.fit(dataFrame);
// rescale each feature to range [min, max].
DataFrame scaledData = scalerModel.transform(dataFrame);
scaledData.show();
Bucketizer
Bucketizer
transforms a column of continuous features to a column of feature buckets, where the buckets are specified by users. It takes a parameter:
splits
: Parameter for mapping continuous features into buckets. With n+1 splits, there are n buckets. A bucket defined by splits x,y holds values in the range [x,y) except the last bucket, which also includes y. Splits should be strictly increasing. Values at -inf, inf must be explicitly provided to cover all Double values; Otherwise, values outside the splits specified will be treated as errors. Two examples ofsplits
areArray(Double.NegativeInfinity, 0.0, 1.0, Double.PositiveInfinity)
andArray(0.0, 1.0, 2.0)
.
Note that if you have no idea of the upper bound and lower bound of the targeted column, you would better add the Double.NegativeInfinity
and Double.PositiveInfinity
as the bounds of your splits to prevent a potenial out of Bucketizer bounds exception.
Note also that the splits that you provided have to be in strictly increasing order, i.e. s0 < s1 < s2 < ... < sn
.
More details can be found in the API docs for Bucketizer.
The following example demonstrates how to bucketize a column of Double
s into another index-wised column.
Refer to the Bucketizer Scala docs for more details on the API.
import org.apache.spark.ml.feature.Bucketizer
val splits = Array(Double.NegativeInfinity, -0.5, 0.0, 0.5, Double.PositiveInfinity)
val data = Array(-0.5, -0.3, 0.0, 0.2)
val dataFrame = sqlContext.createDataFrame(data.map(Tuple1.apply)).toDF("features")
val bucketizer = new Bucketizer()
.setInputCol("features")
.setOutputCol("bucketedFeatures")
.setSplits(splits)
// Transform original data into its bucket index.
val bucketedData = bucketizer.transform(dataFrame)
bucketedData.show()
Refer to the Bucketizer Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.Bucketizer;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
double[] splits = {Double.NEGATIVE_INFINITY, -0.5, 0.0, 0.5, Double.POSITIVE_INFINITY};
JavaRDD<Row> data = jsc.parallelize(Arrays.asList(
RowFactory.create(-0.5),
RowFactory.create(-0.3),
RowFactory.create(0.0),
RowFactory.create(0.2)
));
StructType schema = new StructType(new StructField[]{
new StructField("features", DataTypes.DoubleType, false, Metadata.empty())
});
DataFrame dataFrame = jsql.createDataFrame(data, schema);
Bucketizer bucketizer = new Bucketizer()
.setInputCol("features")
.setOutputCol("bucketedFeatures")
.setSplits(splits);
// Transform original data into its bucket index.
DataFrame bucketedData = bucketizer.transform(dataFrame);
bucketedData.show();
Refer to the Bucketizer Python docs for more details on the API.
from pyspark.ml.feature import Bucketizer
splits = [-float("inf"), -0.5, 0.0, 0.5, float("inf")]
data = [(-0.5,), (-0.3,), (0.0,), (0.2,)]
dataFrame = sqlContext.createDataFrame(data, ["features"])
bucketizer = Bucketizer(splits=splits, inputCol="features", outputCol="bucketedFeatures")
# Transform original data into its bucket index.
bucketedData = bucketizer.transform(dataFrame)
bucketedData.show()
ElementwiseProduct
ElementwiseProduct multiplies each input vector by a provided “weight” vector, using element-wise multiplication. In other words, it scales each column of the dataset by a scalar multiplier. This represents the Hadamard product between the input vector, v
and transforming vector, w
, to yield a result vector.
\[ \begin{pmatrix}
v_1 \\
\vdots \\
v_N
\end{pmatrix} \circ \begin{pmatrix}
w_1 \\
\vdots \\
w_N
\end{pmatrix}
= \begin{pmatrix}
v_1 w_1 \\
\vdots \\
v_N w_N
\end{pmatrix}
\]
This example below demonstrates how to transform vectors using a transforming vector value.
Refer to the ElementwiseProduct Scala docs for more details on the API.
import org.apache.spark.ml.feature.ElementwiseProduct
import org.apache.spark.mllib.linalg.Vectors
// Create some vector data; also works for sparse vectors
val dataFrame = sqlContext.createDataFrame(Seq(
("a", Vectors.dense(1.0, 2.0, 3.0)),
("b", Vectors.dense(4.0, 5.0, 6.0)))).toDF("id", "vector")
val transformingVector = Vectors.dense(0.0, 1.0, 2.0)
val transformer = new ElementwiseProduct()
.setScalingVec(transformingVector)
.setInputCol("vector")
.setOutputCol("transformedVector")
// Batch transform the vectors to create new column:
transformer.transform(dataFrame).show()
Refer to the ElementwiseProduct Java docs for more details on the API.
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.ElementwiseProduct;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.VectorUDT;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
// Create some vector data; also works for sparse vectors
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
RowFactory.create("a", Vectors.dense(1.0, 2.0, 3.0)),
RowFactory.create("b", Vectors.dense(4.0, 5.0, 6.0))
));
List<StructField> fields = new ArrayList<StructField>(2);
fields.add(DataTypes.createStructField("id", DataTypes.StringType, false));
fields.add(DataTypes.createStructField("vector", new VectorUDT(), false));
StructType schema = DataTypes.createStructType(fields);
DataFrame dataFrame = sqlContext.createDataFrame(jrdd, schema);
Vector transformingVector = Vectors.dense(0.0, 1.0, 2.0);
ElementwiseProduct transformer = new ElementwiseProduct()
.setScalingVec(transformingVector)
.setInputCol("vector")
.setOutputCol("transformedVector");
// Batch transform the vectors to create new column:
transformer.transform(dataFrame).show();
Refer to the ElementwiseProduct Python docs for more details on the API.
from pyspark.ml.feature import ElementwiseProduct
from pyspark.mllib.linalg import Vectors
data = [(Vectors.dense([1.0, 2.0, 3.0]),), (Vectors.dense([4.0, 5.0, 6.0]),)]
df = sqlContext.createDataFrame(data, ["vector"])
transformer = ElementwiseProduct(scalingVec=Vectors.dense([0.0, 1.0, 2.0]),
inputCol="vector", outputCol="transformedVector")
transformer.transform(df).show()
SQLTransformer
SQLTransformer
implements the transformations which are defined by SQL statement.
Currently we only support SQL syntax like "SELECT ... FROM __THIS__ ..."
where "__THIS__"
represents the underlying table of the input dataset.
The select clause specifies the fields, constants, and expressions to display in
the output, it can be any select clause that Spark SQL supports. Users can also
use Spark SQL built-in function and UDFs to operate on these selected columns.
For example, SQLTransformer
supports statements like:
SELECT a, a + b AS a_b FROM __THIS__
SELECT a, SQRT(b) AS b_sqrt FROM __THIS__ where a > 5
SELECT a, b, SUM(c) AS c_sum FROM __THIS__ GROUP BY a, b
Examples
Assume that we have the following DataFrame with columns id
, v1
and v2
:
id | v1 | v2
----|-----|-----
0 | 1.0 | 3.0
2 | 2.0 | 5.0
This is the output of the SQLTransformer
with statement "SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__"
:
id | v1 | v2 | v3 | v4
----|-----|-----|-----|-----
0 | 1.0 | 3.0 | 4.0 | 3.0
2 | 2.0 | 5.0 | 7.0 |10.0
Refer to the SQLTransformer Scala docs for more details on the API.
import org.apache.spark.ml.feature.SQLTransformer
val df = sqlContext.createDataFrame(
Seq((0, 1.0, 3.0), (2, 2.0, 5.0))).toDF("id", "v1", "v2")
val sqlTrans = new SQLTransformer().setStatement(
"SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__")
sqlTrans.transform(df).show()
Refer to the SQLTransformer Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.ml.feature.SQLTransformer;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.*;
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
RowFactory.create(0, 1.0, 3.0),
RowFactory.create(2, 2.0, 5.0)
));
StructType schema = new StructType(new StructField [] {
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("v1", DataTypes.DoubleType, false, Metadata.empty()),
new StructField("v2", DataTypes.DoubleType, false, Metadata.empty())
});
DataFrame df = sqlContext.createDataFrame(jrdd, schema);
SQLTransformer sqlTrans = new SQLTransformer().setStatement(
"SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__");
sqlTrans.transform(df).show();
Refer to the SQLTransformer Python docs for more details on the API.
from pyspark.ml.feature import SQLTransformer
df = sqlContext.createDataFrame([
(0, 1.0, 3.0),
(2, 2.0, 5.0)
], ["id", "v1", "v2"])
sqlTrans = SQLTransformer(
statement="SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__")
sqlTrans.transform(df).show()
VectorAssembler
VectorAssembler
is a transformer that combines a given list of columns into a single vector
column.
It is useful for combining raw features and features generated by different feature transformers
into a single feature vector, in order to train ML models like logistic regression and decision
trees.
VectorAssembler
accepts the following input column types: all numeric types, boolean type,
and vector type.
In each row, the values of the input columns will be concatenated into a vector in the specified
order.
Examples
Assume that we have a DataFrame with the columns id
, hour
, mobile
, userFeatures
,
and clicked
:
id | hour | mobile | userFeatures | clicked
----|------|--------|------------------|---------
0 | 18 | 1.0 | [0.0, 10.0, 0.5] | 1.0
userFeatures
is a vector column that contains three user features.
We want to combine hour
, mobile
, and userFeatures
into a single feature vector
called features
and use it to predict clicked
or not.
If we set VectorAssembler
’s input columns to hour
, mobile
, and userFeatures
and
output column to features
, after transformation we should get the following DataFrame:
id | hour | mobile | userFeatures | clicked | features
----|------|--------|------------------|---------|-----------------------------
0 | 18 | 1.0 | [0.0, 10.0, 0.5] | 1.0 | [18.0, 1.0, 0.0, 10.0, 0.5]
Refer to the VectorAssembler Scala docs for more details on the API.
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.mllib.linalg.Vectors
val dataset = sqlContext.createDataFrame(
Seq((0, 18, 1.0, Vectors.dense(0.0, 10.0, 0.5), 1.0))
).toDF("id", "hour", "mobile", "userFeatures", "clicked")
val assembler = new VectorAssembler()
.setInputCols(Array("hour", "mobile", "userFeatures"))
.setOutputCol("features")
val output = assembler.transform(dataset)
println(output.select("features", "clicked").first())
Refer to the VectorAssembler Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.VectorAssembler;
import org.apache.spark.mllib.linalg.VectorUDT;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.*;
import static org.apache.spark.sql.types.DataTypes.*;
StructType schema = createStructType(new StructField[]{
createStructField("id", IntegerType, false),
createStructField("hour", IntegerType, false),
createStructField("mobile", DoubleType, false),
createStructField("userFeatures", new VectorUDT(), false),
createStructField("clicked", DoubleType, false)
});
Row row = RowFactory.create(0, 18, 1.0, Vectors.dense(0.0, 10.0, 0.5), 1.0);
JavaRDD<Row> rdd = jsc.parallelize(Arrays.asList(row));
DataFrame dataset = sqlContext.createDataFrame(rdd, schema);
VectorAssembler assembler = new VectorAssembler()
.setInputCols(new String[]{"hour", "mobile", "userFeatures"})
.setOutputCol("features");
DataFrame output = assembler.transform(dataset);
System.out.println(output.select("features", "clicked").first());
Refer to the VectorAssembler Python docs for more details on the API.
from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
dataset = sqlContext.createDataFrame(
[(0, 18, 1.0, Vectors.dense([0.0, 10.0, 0.5]), 1.0)],
["id", "hour", "mobile", "userFeatures", "clicked"])
assembler = VectorAssembler(
inputCols=["hour", "mobile", "userFeatures"],
outputCol="features")
output = assembler.transform(dataset)
print(output.select("features", "clicked").first())
QuantileDiscretizer
QuantileDiscretizer
takes a column with continuous features and outputs a column with binned
categorical features.
The bin ranges are chosen by taking a sample of the data and dividing it into roughly equal parts.
The lower and upper bin bounds will be -Infinity
and +Infinity
, covering all real values.
This attempts to find numBuckets
partitions based on a sample of the given input data, but it may
find fewer depending on the data sample values.
Note that the result may be different every time you run it, since the sample strategy behind it is non-deterministic.
Examples
Assume that we have a DataFrame with the columns id
, hour
:
id | hour
----|------
0 | 18.0
----|------
1 | 19.0
----|------
2 | 8.0
----|------
3 | 5.0
----|------
4 | 2.2
hour
is a continuous feature with Double
type. We want to turn the continuous feature into
categorical one. Given numBuckets = 3
, we should get the following DataFrame:
id | hour | result
----|------|------
0 | 18.0 | 2.0
----|------|------
1 | 19.0 | 2.0
----|------|------
2 | 8.0 | 1.0
----|------|------
3 | 5.0 | 1.0
----|------|------
4 | 2.2 | 0.0
Refer to the QuantileDiscretizer Scala docs for more details on the API.
import org.apache.spark.ml.feature.QuantileDiscretizer
val data = Array((0, 18.0), (1, 19.0), (2, 8.0), (3, 5.0), (4, 2.2))
val df = sc.parallelize(data).toDF("id", "hour")
val discretizer = new QuantileDiscretizer()
.setInputCol("hour")
.setOutputCol("result")
.setNumBuckets(3)
val result = discretizer.fit(df).transform(df)
result.show()
Refer to the QuantileDiscretizer Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.QuantileDiscretizer;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
JavaRDD<Row> jrdd = jsc.parallelize(
Arrays.asList(
RowFactory.create(0, 18.0),
RowFactory.create(1, 19.0),
RowFactory.create(2, 8.0),
RowFactory.create(3, 5.0),
RowFactory.create(4, 2.2)
)
);
StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("hour", DataTypes.DoubleType, false, Metadata.empty())
});
DataFrame df = sqlContext.createDataFrame(jrdd, schema);
QuantileDiscretizer discretizer = new QuantileDiscretizer()
.setInputCol("hour")
.setOutputCol("result")
.setNumBuckets(3);
DataFrame result = discretizer.fit(df).transform(df);
result.show();
Feature Selectors
VectorSlicer
VectorSlicer
is a transformer that takes a feature vector and outputs a new feature vector with a
sub-array of the original features. It is useful for extracting features from a vector column.
VectorSlicer
accepts a vector column with a specified indices, then outputs a new vector column
whose values are selected via those indices. There are two types of indices,
-
Integer indices that represents the indices into the vector,
setIndices()
; -
String indices that represents the names of features into the vector,
setNames()
. This requires the vector column to have anAttributeGroup
since the implementation matches on the name field of anAttribute
.
Specification by integer and string are both acceptable. Moreover, you can use integer index and string name simultaneously. At least one feature must be selected. Duplicate features are not allowed, so there can be no overlap between selected indices and names. Note that if names of features are selected, an exception will be threw out when encountering with empty input attributes.
The output vector will order features with the selected indices first (in the order given), followed by the selected names (in the order given).
Examples
Suppose that we have a DataFrame with the column userFeatures
:
userFeatures
------------------
[0.0, 10.0, 0.5]
userFeatures
is a vector column that contains three user features. Assuming that the first column
of userFeatures
are all zeros, so we want to remove it and only the last two columns are selected.
The VectorSlicer
selects the last two elements with setIndices(1, 2)
then produces a new vector
column named features
:
userFeatures | features
------------------|-----------------------------
[0.0, 10.0, 0.5] | [10.0, 0.5]
Suppose also that we have a potential input attributes for the userFeatures
, i.e.
["f1", "f2", "f3"]
, then we can use setNames("f2", "f3")
to select them.
userFeatures | features
------------------|-----------------------------
[0.0, 10.0, 0.5] | [10.0, 0.5]
["f1", "f2", "f3"] | ["f2", "f3"]
Refer to the VectorSlicer Scala docs for more details on the API.
import org.apache.spark.ml.attribute.{Attribute, AttributeGroup, NumericAttribute}
import org.apache.spark.ml.feature.VectorSlicer
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType
val data = Array(Row(Vectors.dense(-2.0, 2.3, 0.0)))
val defaultAttr = NumericAttribute.defaultAttr
val attrs = Array("f1", "f2", "f3").map(defaultAttr.withName)
val attrGroup = new AttributeGroup("userFeatures", attrs.asInstanceOf[Array[Attribute]])
val dataRDD = sc.parallelize(data)
val dataset = sqlContext.createDataFrame(dataRDD, StructType(Array(attrGroup.toStructField())))
val slicer = new VectorSlicer().setInputCol("userFeatures").setOutputCol("features")
slicer.setIndices(Array(1)).setNames(Array("f3"))
// or slicer.setIndices(Array(1, 2)), or slicer.setNames(Array("f2", "f3"))
val output = slicer.transform(dataset)
println(output.select("userFeatures", "features").first())
Refer to the VectorSlicer Java docs for more details on the API.
import com.google.common.collect.Lists;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.attribute.Attribute;
import org.apache.spark.ml.attribute.AttributeGroup;
import org.apache.spark.ml.attribute.NumericAttribute;
import org.apache.spark.ml.feature.VectorSlicer;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.*;
Attribute[] attrs = new Attribute[]{
NumericAttribute.defaultAttr().withName("f1"),
NumericAttribute.defaultAttr().withName("f2"),
NumericAttribute.defaultAttr().withName("f3")
};
AttributeGroup group = new AttributeGroup("userFeatures", attrs);
JavaRDD<Row> jrdd = jsc.parallelize(Lists.newArrayList(
RowFactory.create(Vectors.sparse(3, new int[]{0, 1}, new double[]{-2.0, 2.3})),
RowFactory.create(Vectors.dense(-2.0, 2.3, 0.0))
));
DataFrame dataset = jsql.createDataFrame(jrdd, (new StructType()).add(group.toStructField()));
VectorSlicer vectorSlicer = new VectorSlicer()
.setInputCol("userFeatures").setOutputCol("features");
vectorSlicer.setIndices(new int[]{1}).setNames(new String[]{"f3"});
// or slicer.setIndices(new int[]{1, 2}), or slicer.setNames(new String[]{"f2", "f3"})
DataFrame output = vectorSlicer.transform(dataset);
System.out.println(output.select("userFeatures", "features").first());
RFormula
RFormula
selects columns specified by an R model formula. It produces a vector column of features and a double column of labels. Like when formulas are used in R for linear regression, string input columns will be one-hot encoded, and numeric columns will be cast to doubles. If not already present in the DataFrame, the output label column will be created from the specified response variable in the formula.
Examples
Assume that we have a DataFrame with the columns id
, country
, hour
, and clicked
:
id | country | hour | clicked
---|---------|------|---------
7 | "US" | 18 | 1.0
8 | "CA" | 12 | 0.0
9 | "NZ" | 15 | 0.0
If we use RFormula
with a formula string of clicked ~ country + hour
, which indicates that we want to
predict clicked
based on country
and hour
, after transformation we should get the following DataFrame:
id | country | hour | clicked | features | label
---|---------|------|---------|------------------|-------
7 | "US" | 18 | 1.0 | [0.0, 0.0, 18.0] | 1.0
8 | "CA" | 12 | 0.0 | [0.0, 1.0, 12.0] | 0.0
9 | "NZ" | 15 | 0.0 | [1.0, 0.0, 15.0] | 0.0
Refer to the RFormula Scala docs for more details on the API.
import org.apache.spark.ml.feature.RFormula
val dataset = sqlContext.createDataFrame(Seq(
(7, "US", 18, 1.0),
(8, "CA", 12, 0.0),
(9, "NZ", 15, 0.0)
)).toDF("id", "country", "hour", "clicked")
val formula = new RFormula()
.setFormula("clicked ~ country + hour")
.setFeaturesCol("features")
.setLabelCol("label")
val output = formula.fit(dataset).transform(dataset)
output.select("features", "label").show()
Refer to the RFormula Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.RFormula;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import static org.apache.spark.sql.types.DataTypes.*;
StructType schema = createStructType(new StructField[]{
createStructField("id", IntegerType, false),
createStructField("country", StringType, false),
createStructField("hour", IntegerType, false),
createStructField("clicked", DoubleType, false)
});
JavaRDD<Row> rdd = jsc.parallelize(Arrays.asList(
RowFactory.create(7, "US", 18, 1.0),
RowFactory.create(8, "CA", 12, 0.0),
RowFactory.create(9, "NZ", 15, 0.0)
));
DataFrame dataset = sqlContext.createDataFrame(rdd, schema);
RFormula formula = new RFormula()
.setFormula("clicked ~ country + hour")
.setFeaturesCol("features")
.setLabelCol("label");
DataFrame output = formula.fit(dataset).transform(dataset);
output.select("features", "label").show();
Refer to the RFormula Python docs for more details on the API.
from pyspark.ml.feature import RFormula
dataset = sqlContext.createDataFrame(
[(7, "US", 18, 1.0),
(8, "CA", 12, 0.0),
(9, "NZ", 15, 0.0)],
["id", "country", "hour", "clicked"])
formula = RFormula(
formula="clicked ~ country + hour",
featuresCol="features",
labelCol="label")
output = formula.fit(dataset).transform(dataset)
output.select("features", "label").show()
ChiSqSelector
ChiSqSelector
stands for Chi-Squared feature selection. It operates on labeled data with
categorical features. ChiSqSelector orders features based on a
Chi-Squared test of independence
from the class, and then filters (selects) the top features which the class label depends on the
most. This is akin to yielding the features with the most predictive power.
Examples
Assume that we have a DataFrame with the columns id
, features
, and clicked
, which is used as
our target to be predicted:
id | features | clicked
---|-----------------------|---------
7 | [0.0, 0.0, 18.0, 1.0] | 1.0
8 | [0.0, 1.0, 12.0, 0.0] | 0.0
9 | [1.0, 0.0, 15.0, 0.1] | 0.0
If we use ChiSqSelector
with a numTopFeatures = 1
, then according to our label clicked
the
last column in our features
chosen as the most useful feature:
id | features | clicked | selectedFeatures
---|-----------------------|---------|------------------
7 | [0.0, 0.0, 18.0, 1.0] | 1.0 | [1.0]
8 | [0.0, 1.0, 12.0, 0.0] | 0.0 | [0.0]
9 | [1.0, 0.0, 15.0, 0.1] | 0.0 | [0.1]
Refer to the ChiSqSelector Scala docs for more details on the API.
import org.apache.spark.ml.feature.ChiSqSelector
import org.apache.spark.mllib.linalg.Vectors
val data = Seq(
(7, Vectors.dense(0.0, 0.0, 18.0, 1.0), 1.0),
(8, Vectors.dense(0.0, 1.0, 12.0, 0.0), 0.0),
(9, Vectors.dense(1.0, 0.0, 15.0, 0.1), 0.0)
)
val df = sc.parallelize(data).toDF("id", "features", "clicked")
val selector = new ChiSqSelector()
.setNumTopFeatures(1)
.setFeaturesCol("features")
.setLabelCol("clicked")
.setOutputCol("selectedFeatures")
val result = selector.fit(df).transform(df)
result.show()
Refer to the ChiSqSelector Java docs for more details on the API.
import java.util.Arrays;
import org.apache.spark.ml.feature.ChiSqSelector;
import org.apache.spark.mllib.linalg.VectorUDT;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
RowFactory.create(7, Vectors.dense(0.0, 0.0, 18.0, 1.0), 1.0),
RowFactory.create(8, Vectors.dense(0.0, 1.0, 12.0, 0.0), 0.0),
RowFactory.create(9, Vectors.dense(1.0, 0.0, 15.0, 0.1), 0.0)
));
StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("features", new VectorUDT(), false, Metadata.empty()),
new StructField("clicked", DataTypes.DoubleType, false, Metadata.empty())
});
DataFrame df = sqlContext.createDataFrame(jrdd, schema);
ChiSqSelector selector = new ChiSqSelector()
.setNumTopFeatures(1)
.setFeaturesCol("features")
.setLabelCol("clicked")
.setOutputCol("selectedFeatures");
DataFrame result = selector.fit(df).transform(df);
result.show();