Spark ML Programming Guide
spark.ml
is a new package introduced in Spark 1.2, which aims to provide a uniform set of
high-level APIs that help users create and tune practical machine learning pipelines.
It is currently an alpha component, and we would like to hear back from the community about
how it fits real-world use cases and how it could be improved.
Note that we will keep supporting and adding features to spark.mllib
along with the
development of spark.ml
.
Users should be comfortable using spark.mllib
features and expect more features coming.
Developers should contribute new algorithms to spark.mllib
and can optionally contribute
to spark.ml
.
Table of Contents
Main Concepts
Spark ML standardizes APIs for machine learning algorithms to make it easier to combine multiple algorithms into a single pipeline, or workflow. This section covers the key concepts introduced by the Spark ML API.
-
ML Dataset: Spark ML uses the
DataFrame
from Spark SQL as a dataset which can hold a variety of data types. E.g., a dataset could have different columns storing text, feature vectors, true labels, and predictions. -
Transformer
: ATransformer
is an algorithm which can transform oneDataFrame
into anotherDataFrame
. E.g., an ML model is aTransformer
which transforms an RDD with features into an RDD with predictions. -
Estimator
: AnEstimator
is an algorithm which can be fit on aDataFrame
to produce aTransformer
. E.g., a learning algorithm is anEstimator
which trains on a dataset and produces a model. -
Pipeline
: APipeline
chains multipleTransformer
s andEstimator
s together to specify an ML workflow. -
Param
: AllTransformer
s andEstimator
s now share a common API for specifying parameters.
ML Dataset
Machine learning can be applied to a wide variety of data types, such as vectors, text, images, and structured data.
Spark ML adopts the DataFrame
from Spark SQL in order to support a variety of data types under a unified Dataset concept.
DataFrame
supports many basic and structured types; see the Spark SQL datatype reference for a list of supported types.
In addition to the types listed in the Spark SQL guide, DataFrame
can use ML Vector
types.
A DataFrame
can be created either implicitly or explicitly from a regular RDD
. See the code examples below and the Spark SQL programming guide for examples.
Columns in a DataFrame
are named. The code examples below use names such as “text,” “features,” and “label.”
ML Algorithms
Transformers
A Transformer
is an abstraction which includes feature transformers and learned models. Technically, a Transformer
implements a method transform()
which converts one DataFrame
into another, generally by appending one or more columns.
For example:
- A feature transformer might take a dataset, read a column (e.g., text), convert it into a new column (e.g., feature vectors), append the new column to the dataset, and output the updated dataset.
- A learning model might take a dataset, read the column containing feature vectors, predict the label for each feature vector, append the labels as a new column, and output the updated dataset.
Estimators
An Estimator
abstracts the concept of a learning algorithm or any algorithm which fits or trains on data. Technically, an Estimator
implements a method fit()
which accepts a DataFrame
and produces a Transformer
.
For example, a learning algorithm such as LogisticRegression
is an Estimator
, and calling fit()
trains a LogisticRegressionModel
, which is a Transformer
.
Properties of ML Algorithms
Transformer
s and Estimator
s are both stateless. In the future, stateful algorithms may be supported via alternative concepts.
Each instance of a Transformer
or Estimator
has a unique ID, which is useful in specifying parameters (discussed below).
Pipeline
In machine learning, it is common to run a sequence of algorithms to process and learn from data. E.g., a simple text document processing workflow might include several stages:
- Split each document’s text into words.
- Convert each document’s words into a numerical feature vector.
- Learn a prediction model using the feature vectors and labels.
Spark ML represents such a workflow as a Pipeline
,
which consists of a sequence of PipelineStage
s (Transformer
s and Estimator
s) to be run in a specific order. We will use this simple workflow as a running example in this section.
How It Works
A Pipeline
is specified as a sequence of stages, and each stage is either a Transformer
or an Estimator
.
These stages are run in order, and the input dataset is modified as it passes through each stage.
For Transformer
stages, the transform()
method is called on the dataset.
For Estimator
stages, the fit()
method is called to produce a Transformer
(which becomes part of the PipelineModel
, or fitted Pipeline
), and that Transformer
’s transform()
method is called on the dataset.
We illustrate this for the simple text document workflow. The figure below is for the training time usage of a Pipeline
.
Above, the top row represents a Pipeline
with three stages.
The first two (Tokenizer
and HashingTF
) are Transformer
s (blue), and the third (LogisticRegression
) is an Estimator
(red).
The bottom row represents data flowing through the pipeline, where cylinders indicate DataFrame
s.
The Pipeline.fit()
method is called on the original dataset which has raw text documents and labels.
The Tokenizer.transform()
method splits the raw text documents into words, adding a new column with words into the dataset.
The HashingTF.transform()
method converts the words column into feature vectors, adding a new column with those vectors to the dataset.
Now, since LogisticRegression
is an Estimator
, the Pipeline
first calls LogisticRegression.fit()
to produce a LogisticRegressionModel
.
If the Pipeline
had more stages, it would call the LogisticRegressionModel
’s transform()
method on the dataset before passing the dataset to the next stage.
A Pipeline
is an Estimator
.
Thus, after a Pipeline
’s fit()
method runs, it produces a PipelineModel
which is a Transformer
. This PipelineModel
is used at test time; the figure below illustrates this usage.
In the figure above, the PipelineModel
has the same number of stages as the original Pipeline
, but all Estimator
s in the original Pipeline
have become Transformer
s.
When the PipelineModel
’s transform()
method is called on a test dataset, the data are passed through the Pipeline
in order.
Each stage’s transform()
method updates the dataset and passes it to the next stage.
Pipeline
s and PipelineModel
s help to ensure that training and test data go through identical feature processing steps.
Details
DAG Pipeline
s: A Pipeline
’s stages are specified as an ordered array. The examples given here are all for linear Pipeline
s, i.e., Pipeline
s in which each stage uses data produced by the previous stage. It is possible to create non-linear Pipeline
s as long as the data flow graph forms a Directed Acyclic Graph (DAG). This graph is currently specified implicitly based on the input and output column names of each stage (generally specified as parameters). If the Pipeline
forms a DAG, then the stages must be specified in topological order.
Runtime checking: Since Pipeline
s can operate on datasets with varied types, they cannot use compile-time type checking. Pipeline
s and PipelineModel
s instead do runtime checking before actually running the Pipeline
. This type checking is done using the dataset schema, a description of the data types of columns in the DataFrame
.
Parameters
Spark ML Estimator
s and Transformer
s use a uniform API for specifying parameters.
A Param
is a named parameter with self-contained documentation.
A ParamMap
is a set of (parameter, value) pairs.
There are two main ways to pass parameters to an algorithm:
- Set parameters for an instance. E.g., if
lr
is an instance ofLogisticRegression
, one could calllr.setMaxIter(10)
to makelr.fit()
use at most 10 iterations. This API resembles the API used in MLlib. - Pass a
ParamMap
tofit()
ortransform()
. Any parameters in theParamMap
will override parameters previously specified via setter methods.
Parameters belong to specific instances of Estimator
s and Transformer
s.
For example, if we have two LogisticRegression
instances lr1
and lr2
, then we can build a ParamMap
with both maxIter
parameters specified: ParamMap(lr1.maxIter -> 10, lr2.maxIter -> 20)
.
This is useful if there are two algorithms with the maxIter
parameter in a Pipeline
.
Code Examples
This section gives code examples illustrating the functionality discussed above. There is not yet documentation for specific algorithms in Spark ML. For more info, please refer to the API Documentation. Spark ML algorithms are currently wrappers for MLlib algorithms, and the MLlib programming guide has details on specific algorithms.
Example: Estimator, Transformer, and Param
This example covers the concepts of Estimator
, Transformer
, and Param
.
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.sql.{Row, SQLContext}
val conf = new SparkConf().setAppName("SimpleParamsExample")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
// Prepare training data.
// We use LabeledPoint, which is a case class. Spark SQL can convert RDDs of case classes
// into DataFrames, where it uses the case class metadata to infer the schema.
val training = sc.parallelize(Seq(
LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)),
LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)),
LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)),
LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5))))
// Create a LogisticRegression instance. This instance is an Estimator.
val lr = new LogisticRegression()
// Print out the parameters, documentation, and any default values.
println("LogisticRegression parameters:\n" + lr.explainParams() + "\n")
// We may set parameters using setter methods.
lr.setMaxIter(10)
.setRegParam(0.01)
// Learn a LogisticRegression model. This uses the parameters stored in lr.
val model1 = lr.fit(training.toDF)
// Since model1 is a Model (i.e., a Transformer produced by an Estimator),
// we can view the parameters it used during fit().
// This prints the parameter (name: value) pairs, where names are unique IDs for this
// LogisticRegression instance.
println("Model 1 was fit using parameters: " + model1.fittingParamMap)
// We may alternatively specify parameters using a ParamMap,
// which supports several methods for specifying parameters.
val paramMap = ParamMap(lr.maxIter -> 20)
paramMap.put(lr.maxIter, 30) // Specify 1 Param. This overwrites the original maxIter.
paramMap.put(lr.regParam -> 0.1, lr.threshold -> 0.55) // Specify multiple Params.
// One can also combine ParamMaps.
val paramMap2 = ParamMap(lr.probabilityCol -> "myProbability") // Change output column name
val paramMapCombined = paramMap ++ paramMap2
// Now learn a new model using the paramMapCombined parameters.
// paramMapCombined overrides all parameters set earlier via lr.set* methods.
val model2 = lr.fit(training.toDF, paramMapCombined)
println("Model 2 was fit using parameters: " + model2.fittingParamMap)
// Prepare test data.
val test = sc.parallelize(Seq(
LabeledPoint(1.0, Vectors.dense(-1.0, 1.5, 1.3)),
LabeledPoint(0.0, Vectors.dense(3.0, 2.0, -0.1)),
LabeledPoint(1.0, Vectors.dense(0.0, 2.2, -1.5))))
// Make predictions on test data using the Transformer.transform() method.
// LogisticRegression.transform will only use the 'features' column.
// Note that model2.transform() outputs a 'myProbability' column instead of the usual
// 'probability' column since we renamed the lr.probabilityCol parameter previously.
model2.transform(test.toDF)
.select("features", "label", "myProbability", "prediction")
.collect()
.foreach { case Row(features: Vector, label: Double, prob: Vector, prediction: Double) =>
println("($features, $label) -> prob=$prob, prediction=$prediction")
}
sc.stop()
import java.util.List;
import com.google.common.collect.Lists;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.ml.classification.LogisticRegressionModel;
import org.apache.spark.ml.param.ParamMap;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.Row;
SparkConf conf = new SparkConf().setAppName("JavaSimpleParamsExample");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext jsql = new SQLContext(jsc);
// Prepare training data.
// We use LabeledPoint, which is a JavaBean. Spark SQL can convert RDDs of JavaBeans
// into DataFrames, where it uses the bean metadata to infer the schema.
List<LabeledPoint> localTraining = Lists.newArrayList(
new LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)),
new LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)),
new LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)),
new LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5)));
DataFrame training = jsql.createDataFrame(jsc.parallelize(localTraining), LabeledPoint.class);
// Create a LogisticRegression instance. This instance is an Estimator.
LogisticRegression lr = new LogisticRegression();
// Print out the parameters, documentation, and any default values.
System.out.println("LogisticRegression parameters:\n" + lr.explainParams() + "\n");
// We may set parameters using setter methods.
lr.setMaxIter(10)
.setRegParam(0.01);
// Learn a LogisticRegression model. This uses the parameters stored in lr.
LogisticRegressionModel model1 = lr.fit(training);
// Since model1 is a Model (i.e., a Transformer produced by an Estimator),
// we can view the parameters it used during fit().
// This prints the parameter (name: value) pairs, where names are unique IDs for this
// LogisticRegression instance.
System.out.println("Model 1 was fit using parameters: " + model1.fittingParamMap());
// We may alternatively specify parameters using a ParamMap.
ParamMap paramMap = new ParamMap();
paramMap.put(lr.maxIter().w(20)); // Specify 1 Param.
paramMap.put(lr.maxIter(), 30); // This overwrites the original maxIter.
paramMap.put(lr.regParam().w(0.1), lr.threshold().w(0.55)); // Specify multiple Params.
// One can also combine ParamMaps.
ParamMap paramMap2 = new ParamMap();
paramMap2.put(lr.probabilityCol().w("myProbability")); // Change output column name
ParamMap paramMapCombined = paramMap.$plus$plus(paramMap2);
// Now learn a new model using the paramMapCombined parameters.
// paramMapCombined overrides all parameters set earlier via lr.set* methods.
LogisticRegressionModel model2 = lr.fit(training, paramMapCombined);
System.out.println("Model 2 was fit using parameters: " + model2.fittingParamMap());
// Prepare test documents.
List<LabeledPoint> localTest = Lists.newArrayList(
new LabeledPoint(1.0, Vectors.dense(-1.0, 1.5, 1.3)),
new LabeledPoint(0.0, Vectors.dense(3.0, 2.0, -0.1)),
new LabeledPoint(1.0, Vectors.dense(0.0, 2.2, -1.5)));
DataFrame test = jsql.createDataFrame(jsc.parallelize(localTest), LabeledPoint.class);
// Make predictions on test documents using the Transformer.transform() method.
// LogisticRegression.transform will only use the 'features' column.
// Note that model2.transform() outputs a 'myProbability' column instead of the usual
// 'probability' column since we renamed the lr.probabilityCol parameter previously.
DataFrame results = model2.transform(test);
for (Row r: results.select("features", "label", "myProbability", "prediction").collect()) {
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") -> prob=" + r.get(2)
+ ", prediction=" + r.get(3));
}
jsc.stop();
Example: Pipeline
This example follows the simple text document Pipeline
illustrated in the figures above.
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.sql.{Row, SQLContext}
// Labeled and unlabeled instance types.
// Spark SQL can infer schema from case classes.
case class LabeledDocument(id: Long, text: String, label: Double)
case class Document(id: Long, text: String)
// Set up contexts. Import implicit conversions to DataFrame from sqlContext.
val conf = new SparkConf().setAppName("SimpleTextClassificationPipeline")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
// Prepare training documents, which are labeled.
val training = sc.parallelize(Seq(
LabeledDocument(0L, "a b c d e spark", 1.0),
LabeledDocument(1L, "b d", 0.0),
LabeledDocument(2L, "spark f g h", 1.0),
LabeledDocument(3L, "hadoop mapreduce", 0.0)))
// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
val tokenizer = new Tokenizer()
.setInputCol("text")
.setOutputCol("words")
val hashingTF = new HashingTF()
.setNumFeatures(1000)
.setInputCol(tokenizer.getOutputCol)
.setOutputCol("features")
val lr = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.01)
val pipeline = new Pipeline()
.setStages(Array(tokenizer, hashingTF, lr))
// Fit the pipeline to training documents.
val model = pipeline.fit(training.toDF)
// Prepare test documents, which are unlabeled.
val test = sc.parallelize(Seq(
Document(4L, "spark i j k"),
Document(5L, "l m n"),
Document(6L, "mapreduce spark"),
Document(7L, "apache hadoop")))
// Make predictions on test documents.
model.transform(test.toDF)
.select("id", "text", "probability", "prediction")
.collect()
.foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) =>
println("($id, $text) --> prob=$prob, prediction=$prediction")
}
sc.stop()
import java.util.List;
import com.google.common.collect.Lists;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.feature.HashingTF;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
// Labeled and unlabeled instance types.
// Spark SQL can infer schema from Java Beans.
public class Document implements Serializable {
private Long id;
private String text;
public Document(Long id, String text) {
this.id = id;
this.text = text;
}
public Long getId() { return this.id; }
public void setId(Long id) { this.id = id; }
public String getText() { return this.text; }
public void setText(String text) { this.text = text; }
}
public class LabeledDocument extends Document implements Serializable {
private Double label;
public LabeledDocument(Long id, String text, Double label) {
super(id, text);
this.label = label;
}
public Double getLabel() { return this.label; }
public void setLabel(Double label) { this.label = label; }
}
// Set up contexts.
SparkConf conf = new SparkConf().setAppName("JavaSimpleTextClassificationPipeline");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext jsql = new SQLContext(jsc);
// Prepare training documents, which are labeled.
List<LabeledDocument> localTraining = Lists.newArrayList(
new LabeledDocument(0L, "a b c d e spark", 1.0),
new LabeledDocument(1L, "b d", 0.0),
new LabeledDocument(2L, "spark f g h", 1.0),
new LabeledDocument(3L, "hadoop mapreduce", 0.0));
DataFrame training = jsql.createDataFrame(jsc.parallelize(localTraining), LabeledDocument.class);
// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
Tokenizer tokenizer = new Tokenizer()
.setInputCol("text")
.setOutputCol("words");
HashingTF hashingTF = new HashingTF()
.setNumFeatures(1000)
.setInputCol(tokenizer.getOutputCol())
.setOutputCol("features");
LogisticRegression lr = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.01);
Pipeline pipeline = new Pipeline()
.setStages(new PipelineStage[] {tokenizer, hashingTF, lr});
// Fit the pipeline to training documents.
PipelineModel model = pipeline.fit(training);
// Prepare test documents, which are unlabeled.
List<Document> localTest = Lists.newArrayList(
new Document(4L, "spark i j k"),
new Document(5L, "l m n"),
new Document(6L, "mapreduce spark"),
new Document(7L, "apache hadoop"));
DataFrame test = jsql.createDataFrame(jsc.parallelize(localTest), Document.class);
// Make predictions on test documents.
DataFrame predictions = model.transform(test);
for (Row r: predictions.select("id", "text", "probability", "prediction").collect()) {
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2)
+ ", prediction=" + r.get(3));
}
jsc.stop();
from pyspark import SparkContext
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import HashingTF, Tokenizer
from pyspark.sql import Row, SQLContext
sc = SparkContext(appName="SimpleTextClassificationPipeline")
sqlCtx = SQLContext(sc)
# Prepare training documents, which are labeled.
LabeledDocument = Row("id", "text", "label")
training = sc.parallelize([(0L, "a b c d e spark", 1.0),
(1L, "b d", 0.0),
(2L, "spark f g h", 1.0),
(3L, "hadoop mapreduce", 0.0)]) \
.map(lambda x: LabeledDocument(*x)).toDF()
# Configure an ML pipeline, which consists of tree stages: tokenizer, hashingTF, and lr.
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
lr = LogisticRegression(maxIter=10, regParam=0.01)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
# Fit the pipeline to training documents.
model = pipeline.fit(training)
# Prepare test documents, which are unlabeled.
Document = Row("id", "text")
test = sc.parallelize([(4L, "spark i j k"),
(5L, "l m n"),
(6L, "mapreduce spark"),
(7L, "apache hadoop")]) \
.map(lambda x: Document(*x)).toDF()
# Make predictions on test documents and print columns of interest.
prediction = model.transform(test)
selected = prediction.select("id", "text", "prediction")
for row in selected.collect():
print row
sc.stop()
Example: Model Selection via Cross-Validation
An important task in ML is model selection, or using data to find the best model or parameters for a given task. This is also called tuning.
Pipeline
s facilitate model selection by making it easy to tune an entire Pipeline
at once, rather than tuning each element in the Pipeline
separately.
Currently, spark.ml
supports model selection using the CrossValidator
class, which takes an Estimator
, a set of ParamMap
s, and an Evaluator
.
CrossValidator
begins by splitting the dataset into a set of folds which are used as separate training and test datasets; e.g., with $k=3$
folds, CrossValidator
will generate 3 (training, test) dataset pairs, each of which uses 2/3 of the data for training and 1/3 for testing.
CrossValidator
iterates through the set of ParamMap
s. For each ParamMap
, it trains the given Estimator
and evaluates it using the given Evaluator
.
The ParamMap
which produces the best evaluation metric (averaged over the $k$
folds) is selected as the best model.
CrossValidator
finally fits the Estimator
using the best ParamMap
and the entire dataset.
The following example demonstrates using CrossValidator
to select from a grid of parameters.
To help construct the parameter grid, we use the ParamGridBuilder
utility.
Note that cross-validation over a grid of parameters is expensive.
E.g., in the example below, the parameter grid has 3 values for hashingTF.numFeatures
and 2 values for lr.regParam
, and CrossValidator
uses 2 folds. This multiplies out to $(3 \times 2) \times 2 = 12$
different models being trained.
In realistic settings, it can be common to try many more parameters and use more folds ($k=3$
and $k=10$
are common).
In other words, using CrossValidator
can be very expensive.
However, it is also a well-established method for choosing parameters which is more statistically sound than heuristic hand-tuning.
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.sql.{Row, SQLContext}
val conf = new SparkConf().setAppName("CrossValidatorExample")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
// Prepare training documents, which are labeled.
val training = sc.parallelize(Seq(
LabeledDocument(0L, "a b c d e spark", 1.0),
LabeledDocument(1L, "b d", 0.0),
LabeledDocument(2L, "spark f g h", 1.0),
LabeledDocument(3L, "hadoop mapreduce", 0.0),
LabeledDocument(4L, "b spark who", 1.0),
LabeledDocument(5L, "g d a y", 0.0),
LabeledDocument(6L, "spark fly", 1.0),
LabeledDocument(7L, "was mapreduce", 0.0),
LabeledDocument(8L, "e spark program", 1.0),
LabeledDocument(9L, "a e c l", 0.0),
LabeledDocument(10L, "spark compile", 1.0),
LabeledDocument(11L, "hadoop software", 0.0)))
// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
val tokenizer = new Tokenizer()
.setInputCol("text")
.setOutputCol("words")
val hashingTF = new HashingTF()
.setInputCol(tokenizer.getOutputCol)
.setOutputCol("features")
val lr = new LogisticRegression()
.setMaxIter(10)
val pipeline = new Pipeline()
.setStages(Array(tokenizer, hashingTF, lr))
// We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
// This will allow us to jointly choose parameters for all Pipeline stages.
// A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
val crossval = new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(new BinaryClassificationEvaluator)
// We use a ParamGridBuilder to construct a grid of parameters to search over.
// With 3 values for hashingTF.numFeatures and 2 values for lr.regParam,
// this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from.
val paramGrid = new ParamGridBuilder()
.addGrid(hashingTF.numFeatures, Array(10, 100, 1000))
.addGrid(lr.regParam, Array(0.1, 0.01))
.build()
crossval.setEstimatorParamMaps(paramGrid)
crossval.setNumFolds(2) // Use 3+ in practice
// Run cross-validation, and choose the best set of parameters.
val cvModel = crossval.fit(training.toDF)
// Prepare test documents, which are unlabeled.
val test = sc.parallelize(Seq(
Document(4L, "spark i j k"),
Document(5L, "l m n"),
Document(6L, "mapreduce spark"),
Document(7L, "apache hadoop")))
// Make predictions on test documents. cvModel uses the best model found (lrModel).
cvModel.transform(test.toDF)
.select("id", "text", "probability", "prediction")
.collect()
.foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) =>
println(s"($id, $text) --> prob=$prob, prediction=$prediction")
}
sc.stop()
import java.util.List;
import com.google.common.collect.Lists;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator;
import org.apache.spark.ml.feature.HashingTF;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.ml.param.ParamMap;
import org.apache.spark.ml.tuning.CrossValidator;
import org.apache.spark.ml.tuning.CrossValidatorModel;
import org.apache.spark.ml.tuning.ParamGridBuilder;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
SparkConf conf = new SparkConf().setAppName("JavaCrossValidatorExample");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext jsql = new SQLContext(jsc);
// Prepare training documents, which are labeled.
List<LabeledDocument> localTraining = Lists.newArrayList(
new LabeledDocument(0L, "a b c d e spark", 1.0),
new LabeledDocument(1L, "b d", 0.0),
new LabeledDocument(2L, "spark f g h", 1.0),
new LabeledDocument(3L, "hadoop mapreduce", 0.0),
new LabeledDocument(4L, "b spark who", 1.0),
new LabeledDocument(5L, "g d a y", 0.0),
new LabeledDocument(6L, "spark fly", 1.0),
new LabeledDocument(7L, "was mapreduce", 0.0),
new LabeledDocument(8L, "e spark program", 1.0),
new LabeledDocument(9L, "a e c l", 0.0),
new LabeledDocument(10L, "spark compile", 1.0),
new LabeledDocument(11L, "hadoop software", 0.0));
DataFrame training = jsql.createDataFrame(jsc.parallelize(localTraining), LabeledDocument.class);
// Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
Tokenizer tokenizer = new Tokenizer()
.setInputCol("text")
.setOutputCol("words");
HashingTF hashingTF = new HashingTF()
.setNumFeatures(1000)
.setInputCol(tokenizer.getOutputCol())
.setOutputCol("features");
LogisticRegression lr = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.01);
Pipeline pipeline = new Pipeline()
.setStages(new PipelineStage[] {tokenizer, hashingTF, lr});
// We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
// This will allow us to jointly choose parameters for all Pipeline stages.
// A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
CrossValidator crossval = new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(new BinaryClassificationEvaluator());
// We use a ParamGridBuilder to construct a grid of parameters to search over.
// With 3 values for hashingTF.numFeatures and 2 values for lr.regParam,
// this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from.
ParamMap[] paramGrid = new ParamGridBuilder()
.addGrid(hashingTF.numFeatures(), new int[]{10, 100, 1000})
.addGrid(lr.regParam(), new double[]{0.1, 0.01})
.build();
crossval.setEstimatorParamMaps(paramGrid);
crossval.setNumFolds(2); // Use 3+ in practice
// Run cross-validation, and choose the best set of parameters.
CrossValidatorModel cvModel = crossval.fit(training);
// Prepare test documents, which are unlabeled.
List<Document> localTest = Lists.newArrayList(
new Document(4L, "spark i j k"),
new Document(5L, "l m n"),
new Document(6L, "mapreduce spark"),
new Document(7L, "apache hadoop"));
DataFrame test = jsql.createDataFrame(jsc.parallelize(localTest), Document.class);
// Make predictions on test documents. cvModel uses the best model found (lrModel).
DataFrame predictions = cvModel.transform(test);
for (Row r: predictions.select("id", "text", "probability", "prediction").collect()) {
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2)
+ ", prediction=" + r.get(3));
}
jsc.stop();
Dependencies
Spark ML currently depends on MLlib and has the same dependencies. Please see the MLlib Dependencies guide for more info.
Spark ML also depends upon Spark SQL, but the relevant parts of Spark SQL do not bring additional dependencies.
Migration Guide
From 1.2 to 1.3
The main API changes are from Spark SQL. We list the most important changes here:
- The old SchemaRDD has been replaced with DataFrame with a somewhat modified API. All algorithms in Spark ML which used to use SchemaRDD now use DataFrame.
- In Spark 1.2, we used implicit conversions from
RDD
s ofLabeledPoint
intoSchemaRDD
s by callingimport sqlContext._
wheresqlContext
was an instance ofSQLContext
. These implicits have been moved, so we now callimport sqlContext.implicits._
. - Java APIs for SQL have also changed accordingly. Please see the examples above and the Spark SQL Programming Guide for details.
Other changes were in LogisticRegression
:
- The
scoreCol
output column (with default value “score”) was renamed to beprobabilityCol
(with default value “probability”). The type was originallyDouble
(for the probability of class 1.0), but it is nowVector
(for the probability of each class, to support multiclass classification in the future). - In Spark 1.2,
LogisticRegressionModel
did not include an intercept. In Spark 1.3, it includes an intercept; however, it will always be 0.0 since it uses the default settings for spark.mllib.LogisticRegressionWithLBFGS. The option to use an intercept will be added in the future.