pyspark.pandas.to_timedelta¶
-
pyspark.pandas.
to_timedelta
(arg, unit: Optional[str] = None, errors: str = 'raise')[source]¶ Convert argument to timedelta.
- Parameters
- argstr, timedelta, list-like or Series
The data to be converted to timedelta.
- unitstr, optional
Denotes the unit of the arg for numeric arg. Defaults to
"ns"
.Possible values: * ‘W’ * ‘D’ / ‘days’ / ‘day’ * ‘hours’ / ‘hour’ / ‘hr’ / ‘h’ * ‘m’ / ‘minute’ / ‘min’ / ‘minutes’ / ‘T’ * ‘S’ / ‘seconds’ / ‘sec’ / ‘second’ * ‘ms’ / ‘milliseconds’ / ‘millisecond’ / ‘milli’ / ‘millis’ / ‘L’ * ‘us’ / ‘microseconds’ / ‘microsecond’ / ‘micro’ / ‘micros’ / ‘U’ * ‘ns’ / ‘nanoseconds’ / ‘nano’ / ‘nanos’ / ‘nanosecond’ / ‘N’
Must not be specified when arg context strings and
errors="raise"
.- errors{‘ignore’, ‘raise’, ‘coerce’}, default ‘raise’
If ‘raise’, then invalid parsing will raise an exception.
If ‘coerce’, then invalid parsing will be set as NaT.
If ‘ignore’, then invalid parsing will return the input.
- Returns
- rettimedelta64, TimedeltaIndex or Series of timedelta64 if parsing succeeded.
See also
DataFrame.astype
Cast argument to a specified dtype.
to_datetime
Convert argument to datetime.
Notes
If the precision is higher than nanoseconds, the precision of the duration is truncated to nanoseconds for string inputs.
Examples
Parsing a single string to a Timedelta:
>>> ps.to_timedelta('1 days 06:05:01.00003') Timedelta('1 days 06:05:01.000030') >>> ps.to_timedelta('15.5us') Timedelta('0 days 00:00:00.000015500')
Parsing a list or array of strings:
>>> ps.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan']) TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015500', NaT], dtype='timedelta64[ns]', freq=None)
Converting numbers by specifying the unit keyword argument:
>>> ps.to_timedelta(np.arange(5), unit='s') TimedeltaIndex(['0 days 00:00:00', '0 days 00:00:01', '0 days 00:00:02', '0 days 00:00:03', '0 days 00:00:04'], dtype='timedelta64[ns]', freq=None) >>> ps.to_timedelta(np.arange(5), unit='d') TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None)