pyspark.sql.functions.log¶
-
pyspark.sql.functions.
log
(arg1: Union[ColumnOrName, float], arg2: Optional[ColumnOrName] = None) → pyspark.sql.column.Column[source]¶ Returns the first argument-based logarithm of the second argument.
If there is only one argument, then this takes the natural logarithm of the argument.
New in version 1.5.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters
- Returns
Column
logariphm of given value.
Examples
>>> from pyspark.sql import functions as sf >>> df = spark.sql("SELECT * FROM VALUES (1), (2), (4) AS t(value)") >>> df.select(sf.log(2.0, df.value).alias('log2_value')).show() +----------+ |log2_value| +----------+ | 0.0| | 1.0| | 2.0| +----------+
And Natural logarithm
>>> df.select(sf.log(df.value).alias('ln_value')).show() +------------------+ | ln_value| +------------------+ | 0.0| |0.6931471805599453| |1.3862943611198906| +------------------+