DataFrameReader.
csv
Loads a CSV file and returns the result as a DataFrame.
DataFrame
This function will go through the input once to determine the input schema if inferSchema is enabled. To avoid going through the entire data once, disable inferSchema option or specify the schema explicitly using schema.
inferSchema
schema
New in version 2.0.0.
Changed in version 3.4.0: Supports Spark Connect.
string, or list of strings, for input path(s), or RDD of Strings storing CSV rows.
pyspark.sql.types.StructType
an optional pyspark.sql.types.StructType for the input schema or a DDL-formatted string (For example col0 INT, col1 DOUBLE).
col0 INT, col1 DOUBLE
For the extra options, refer to Data Source Option for the version you use.
Examples
Write a DataFrame into a CSV file and read it back.
>>> import tempfile >>> with tempfile.TemporaryDirectory() as d: ... # Write a DataFrame into a CSV file ... df = spark.createDataFrame([{"age": 100, "name": "Hyukjin Kwon"}]) ... df.write.mode("overwrite").format("csv").save(d) ... ... # Read the CSV file as a DataFrame with 'nullValue' option set to 'Hyukjin Kwon'. ... spark.read.csv(d, schema=df.schema, nullValue="Hyukjin Kwon").show() +---+----+ |age|name| +---+----+ |100|null| +---+----+