pyspark.pandas.sql

pyspark.pandas.sql(query: str, index_col: Union[str, List[str], None] = None, args: Dict[str, str] = {}, **kwargs: Any) → pyspark.pandas.frame.DataFrame[source]

Execute a SQL query and return the result as a pandas-on-Spark DataFrame.

This function acts as a standard Python string formatter with understanding the following variable types:

  • pandas-on-Spark DataFrame

  • pandas-on-Spark Series

  • pandas DataFrame

  • pandas Series

  • string

Also the method can bind named parameters to SQL literals from args.

Parameters
querystr

the SQL query

index_colstr or list of str, optional

Column names to be used in Spark to represent pandas-on-Spark’s index. The index name in pandas-on-Spark is ignored. By default, the index is always lost.

Note

If you want to preserve the index, explicitly use DataFrame.reset_index(), and pass it to the SQL statement with index_col parameter.

For example,

>>> psdf = ps.DataFrame({"A": [1, 2, 3], "B":[4, 5, 6]}, index=['a', 'b', 'c'])
>>> new_psdf = psdf.reset_index()
>>> ps.sql("SELECT * FROM {new_psdf}", index_col="index", new_psdf=new_psdf)
... 
       A  B
index
a      1  4
b      2  5
c      3  6

For MultiIndex,

>>> psdf = ps.DataFrame(
...     {"A": [1, 2, 3], "B": [4, 5, 6]},
...     index=pd.MultiIndex.from_tuples(
...         [("a", "b"), ("c", "d"), ("e", "f")], names=["index1", "index2"]
...     ),
... )
>>> new_psdf = psdf.reset_index()
>>> ps.sql(
...     "SELECT * FROM {new_psdf}", index_col=["index1", "index2"], new_psdf=new_psdf)
... 
               A  B
index1 index2
a      b       1  4
c      d       2  5
e      f       3  6

Also note that the index name(s) should be matched to the existing name.

argsdict

A dictionary of parameter names to string values that are parsed as SQL literal expressions. For example, dict keys: “rank”, “name”, “birthdate”; dict values: “1”, “‘Steven’”, “DATE’2023-03-21’”. The fragments of string values belonged to SQL comments are skipped while parsing.

New in version 3.4.0.

kwargs

other variables that the user want to set that can be referenced in the query

Returns
pandas-on-Spark DataFrame

Examples

Calling a built-in SQL function.

>>> ps.sql("SELECT * FROM range(10) where id > 7")
   id
0   8
1   9
>>> ps.sql("SELECT * FROM range(10) WHERE id > {bound1} AND id < {bound2}", bound1=7, bound2=9)
   id
0   8
>>> mydf = ps.range(10)
>>> x = tuple(range(4))
>>> ps.sql("SELECT {ser} FROM {mydf} WHERE id IN {x}", ser=mydf.id, mydf=mydf, x=x)
   id
0   0
1   1
2   2
3   3

Mixing pandas-on-Spark and pandas DataFrames in a join operation. Note that the index is dropped.

>>> ps.sql('''
...   SELECT m1.a, m2.b
...   FROM {table1} m1 INNER JOIN {table2} m2
...   ON m1.key = m2.key
...   ORDER BY m1.a, m2.b''',
...   table1=ps.DataFrame({"a": [1,2], "key": ["a", "b"]}),
...   table2=pd.DataFrame({"b": [3,4,5], "key": ["a", "b", "b"]}))
   a  b
0  1  3
1  2  4
2  2  5

Also, it is possible to query using Series.

>>> psdf = ps.DataFrame({"A": [1, 2, 3], "B":[4, 5, 6]}, index=['a', 'b', 'c'])
>>> ps.sql("SELECT {mydf.A} FROM {mydf}", mydf=psdf)
   A
0  1
1  2
2  3

And substitude named parameters with the : prefix by SQL literals.

>>> ps.sql("SELECT * FROM range(10) WHERE id > :bound1", args={"bound1":"7"})
   id
0   8
1   9