pyspark.ml.classification.
LogisticRegression
Logistic regression. This class supports multinomial logistic (softmax) and binomial logistic regression.
New in version 1.3.0.
Examples
>>> from pyspark.sql import Row >>> from pyspark.ml.linalg import Vectors >>> bdf = sc.parallelize([ ... Row(label=1.0, weight=1.0, features=Vectors.dense(0.0, 5.0)), ... Row(label=0.0, weight=2.0, features=Vectors.dense(1.0, 2.0)), ... Row(label=1.0, weight=3.0, features=Vectors.dense(2.0, 1.0)), ... Row(label=0.0, weight=4.0, features=Vectors.dense(3.0, 3.0))]).toDF() >>> blor = LogisticRegression(weightCol="weight") >>> blor.getRegParam() 0.0 >>> blor.setRegParam(0.01) LogisticRegression... >>> blor.getRegParam() 0.01 >>> blor.setMaxIter(10) LogisticRegression... >>> blor.getMaxIter() 10 >>> blor.clear(blor.maxIter) >>> blorModel = blor.fit(bdf) >>> blorModel.setFeaturesCol("features") LogisticRegressionModel... >>> blorModel.setProbabilityCol("newProbability") LogisticRegressionModel... >>> blorModel.getProbabilityCol() 'newProbability' >>> blorModel.getMaxBlockSizeInMB() 0.0 >>> blorModel.setThreshold(0.1) LogisticRegressionModel... >>> blorModel.getThreshold() 0.1 >>> blorModel.coefficients DenseVector([-1.080..., -0.646...]) >>> blorModel.intercept 3.112... >>> blorModel.evaluate(bdf).accuracy == blorModel.summary.accuracy True >>> data_path = "data/mllib/sample_multiclass_classification_data.txt" >>> mdf = spark.read.format("libsvm").load(data_path) >>> mlor = LogisticRegression(regParam=0.1, elasticNetParam=1.0, family="multinomial") >>> mlorModel = mlor.fit(mdf) >>> mlorModel.coefficientMatrix SparseMatrix(3, 4, [0, 1, 2, 3], [3, 2, 1], [1.87..., -2.75..., -0.50...], 1) >>> mlorModel.interceptVector DenseVector([0.04..., -0.42..., 0.37...]) >>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0, 1.0))]).toDF() >>> blorModel.predict(test0.head().features) 1.0 >>> blorModel.predictRaw(test0.head().features) DenseVector([-3.54..., 3.54...]) >>> blorModel.predictProbability(test0.head().features) DenseVector([0.028, 0.972]) >>> result = blorModel.transform(test0).head() >>> result.prediction 1.0 >>> result.newProbability DenseVector([0.02..., 0.97...]) >>> result.rawPrediction DenseVector([-3.54..., 3.54...]) >>> test1 = sc.parallelize([Row(features=Vectors.sparse(2, [0], [1.0]))]).toDF() >>> blorModel.transform(test1).head().prediction 1.0 >>> blor.setParams("vector") Traceback (most recent call last): ... TypeError: Method setParams forces keyword arguments. >>> lr_path = temp_path + "/lr" >>> blor.save(lr_path) >>> lr2 = LogisticRegression.load(lr_path) >>> lr2.getRegParam() 0.01 >>> model_path = temp_path + "/lr_model" >>> blorModel.save(model_path) >>> model2 = LogisticRegressionModel.load(model_path) >>> blorModel.coefficients[0] == model2.coefficients[0] True >>> blorModel.intercept == model2.intercept True >>> model2 LogisticRegressionModel: uid=..., numClasses=2, numFeatures=2 >>> blorModel.transform(test0).take(1) == model2.transform(test0).take(1) True
Methods
clear(param)
clear
Clears a param from the param map if it has been explicitly set.
copy([extra])
copy
Creates a copy of this instance with the same uid and some extra params.
explainParam(param)
explainParam
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
explainParams()
explainParams
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])
extractParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
fit(dataset[, params])
fit
Fits a model to the input dataset with optional parameters.
fitMultiple(dataset, paramMaps)
fitMultiple
Fits a model to the input dataset for each param map in paramMaps.
getAggregationDepth()
getAggregationDepth
Gets the value of aggregationDepth or its default value.
getElasticNetParam()
getElasticNetParam
Gets the value of elasticNetParam or its default value.
getFamily()
getFamily
Gets the value of family or its default value.
family
getFeaturesCol()
getFeaturesCol
Gets the value of featuresCol or its default value.
getFitIntercept()
getFitIntercept
Gets the value of fitIntercept or its default value.
getLabelCol()
getLabelCol
Gets the value of labelCol or its default value.
getLowerBoundsOnCoefficients()
getLowerBoundsOnCoefficients
Gets the value of lowerBoundsOnCoefficients
lowerBoundsOnCoefficients
getLowerBoundsOnIntercepts()
getLowerBoundsOnIntercepts
Gets the value of lowerBoundsOnIntercepts
lowerBoundsOnIntercepts
getMaxBlockSizeInMB()
getMaxBlockSizeInMB
Gets the value of maxBlockSizeInMB or its default value.
getMaxIter()
getMaxIter
Gets the value of maxIter or its default value.
getOrDefault(param)
getOrDefault
Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)
getParam
Gets a param by its name.
getPredictionCol()
getPredictionCol
Gets the value of predictionCol or its default value.
getProbabilityCol()
getProbabilityCol
Gets the value of probabilityCol or its default value.
getRawPredictionCol()
getRawPredictionCol
Gets the value of rawPredictionCol or its default value.
getRegParam()
getRegParam
Gets the value of regParam or its default value.
getStandardization()
getStandardization
Gets the value of standardization or its default value.
getThreshold()
getThreshold
Get threshold for binary classification.
getThresholds()
getThresholds
If thresholds is set, return its value.
thresholds
getTol()
getTol
Gets the value of tol or its default value.
getUpperBoundsOnCoefficients()
getUpperBoundsOnCoefficients
Gets the value of upperBoundsOnCoefficients
upperBoundsOnCoefficients
getUpperBoundsOnIntercepts()
getUpperBoundsOnIntercepts
Gets the value of upperBoundsOnIntercepts
upperBoundsOnIntercepts
getWeightCol()
getWeightCol
Gets the value of weightCol or its default value.
hasDefault(param)
hasDefault
Checks whether a param has a default value.
hasParam(paramName)
hasParam
Tests whether this instance contains a param with a given (string) name.
isDefined(param)
isDefined
Checks whether a param is explicitly set by user or has a default value.
isSet(param)
isSet
Checks whether a param is explicitly set by user.
load(path)
load
Reads an ML instance from the input path, a shortcut of read().load(path).
read()
read
Returns an MLReader instance for this class.
save(path)
save
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)
set
Sets a parameter in the embedded param map.
setAggregationDepth(value)
setAggregationDepth
Sets the value of aggregationDepth.
aggregationDepth
setElasticNetParam(value)
setElasticNetParam
Sets the value of elasticNetParam.
elasticNetParam
setFamily(value)
setFamily
Sets the value of family.
setFeaturesCol(value)
setFeaturesCol
Sets the value of featuresCol.
featuresCol
setFitIntercept(value)
setFitIntercept
Sets the value of fitIntercept.
fitIntercept
setLabelCol(value)
setLabelCol
Sets the value of labelCol.
labelCol
setLowerBoundsOnCoefficients(value)
setLowerBoundsOnCoefficients
Sets the value of lowerBoundsOnCoefficients
setLowerBoundsOnIntercepts(value)
setLowerBoundsOnIntercepts
Sets the value of lowerBoundsOnIntercepts
setMaxBlockSizeInMB(value)
setMaxBlockSizeInMB
Sets the value of maxBlockSizeInMB.
maxBlockSizeInMB
setMaxIter(value)
setMaxIter
Sets the value of maxIter.
maxIter
setParams(*[, featuresCol, labelCol, …])
setParams
setParams(self, *, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, threshold=0.5, thresholds=None, probabilityCol=”probability”, rawPredictionCol=”rawPrediction”, standardization=True, weightCol=None, aggregationDepth=2, family=”auto”, lowerBoundsOnCoefficients=None, upperBoundsOnCoefficients=None, lowerBoundsOnIntercepts=None, upperBoundsOnIntercepts=None, maxBlockSizeInMB=0.0): Sets params for logistic regression.
setPredictionCol(value)
setPredictionCol
Sets the value of predictionCol.
predictionCol
setProbabilityCol(value)
setProbabilityCol
Sets the value of probabilityCol.
probabilityCol
setRawPredictionCol(value)
setRawPredictionCol
Sets the value of rawPredictionCol.
rawPredictionCol
setRegParam(value)
setRegParam
Sets the value of regParam.
regParam
setStandardization(value)
setStandardization
Sets the value of standardization.
standardization
setThreshold(value)
setThreshold
Sets the value of threshold.
threshold
setThresholds(value)
setThresholds
Sets the value of thresholds.
setTol(value)
setTol
Sets the value of tol.
tol
setUpperBoundsOnCoefficients(value)
setUpperBoundsOnCoefficients
Sets the value of upperBoundsOnCoefficients
setUpperBoundsOnIntercepts(value)
setUpperBoundsOnIntercepts
Sets the value of upperBoundsOnIntercepts
setWeightCol(value)
setWeightCol
Sets the value of weightCol.
weightCol
write()
write
Returns an MLWriter instance for this ML instance.
Attributes
params
Returns all params ordered by name.
Methods Documentation
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Extra parameters to copy to the new instance
JavaParams
Copy of this instance
extra param values
merged param map
pyspark.sql.DataFrame
input dataset.
an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Transformer
fitted model(s)
New in version 2.3.0.
collections.abc.Sequence
A Sequence of param maps.
_FitMultipleIterator
A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential.
New in version 2.1.0.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
If thresholds is set with length 2 (i.e., binary classification), this returns the equivalent threshold: \(\frac{1}{1 + \frac{thresholds(0)}{thresholds(1)}}\). Otherwise, returns threshold if set or its default value if unset.
New in version 1.4.0.
If thresholds is set, return its value. Otherwise, if threshold is set, return the equivalent thresholds for binary classification: (1-threshold, threshold). If neither are set, throw an error.
New in version 1.5.0.
New in version 3.0.0.
New in version 3.1.0.
setParams(self, *, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, threshold=0.5, thresholds=None, probabilityCol=”probability”, rawPredictionCol=”rawPrediction”, standardization=True, weightCol=None, aggregationDepth=2, family=”auto”, lowerBoundsOnCoefficients=None, upperBoundsOnCoefficients=None, lowerBoundsOnIntercepts=None, upperBoundsOnIntercepts=None, maxBlockSizeInMB=0.0): Sets params for logistic regression. If the threshold and thresholds Params are both set, they must be equivalent.
Sets the value of threshold. Clears value of thresholds if it has been set.
Attributes Documentation
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
dir()
Param