pyspark.sql.functions.
from_csv
Parses a column containing a CSV string to a row with the specified schema. Returns null, in the case of an unparseable string.
New in version 3.0.0.
Column
string column in CSV format
a string with schema in DDL format to use when parsing the CSV column.
options to control parsing. accepts the same options as the CSV datasource
Examples
>>> data = [("1,2,3",)] >>> df = spark.createDataFrame(data, ("value",)) >>> df.select(from_csv(df.value, "a INT, b INT, c INT").alias("csv")).collect() [Row(csv=Row(a=1, b=2, c=3))] >>> value = data[0][0] >>> df.select(from_csv(df.value, schema_of_csv(value)).alias("csv")).collect() [Row(csv=Row(_c0=1, _c1=2, _c2=3))] >>> data = [(" abc",)] >>> df = spark.createDataFrame(data, ("value",)) >>> options = {'ignoreLeadingWhiteSpace': True} >>> df.select(from_csv(df.value, "s string", options).alias("csv")).collect() [Row(csv=Row(s='abc'))]