Class/Object

org.apache.spark.mllib.clustering

GaussianMixtureModel

Related Docs: object GaussianMixtureModel | package clustering

Permalink

class GaussianMixtureModel extends Serializable with Saveable

Multivariate Gaussian Mixture Model (GMM) consisting of k Gaussians, where points are drawn from each Gaussian i=1..k with probability w(i); mu(i) and sigma(i) are the respective mean and covariance for each Gaussian distribution i=1..k.

Annotations
@Since( "1.3.0" )
Source
GaussianMixtureModel.scala
Linear Supertypes
Saveable, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GaussianMixtureModel
  2. Saveable
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GaussianMixtureModel(weights: Array[Double], gaussians: Array[MultivariateGaussian])

    Permalink

    weights

    Weights for each Gaussian distribution in the mixture, where weights(i) is the weight for Gaussian i, and weights.sum == 1

    gaussians

    Array of MultivariateGaussian where gaussians(i) represents the Multivariate Gaussian (Normal) Distribution for Gaussian i

    Annotations
    @Since( "1.3.0" )

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. def formatVersion: String

    Permalink

    Current version of model save/load format.

    Current version of model save/load format.

    Attributes
    protected
    Definition Classes
    GaussianMixtureModelSaveable
  10. val gaussians: Array[MultivariateGaussian]

    Permalink

    Array of MultivariateGaussian where gaussians(i) represents the Multivariate Gaussian (Normal) Distribution for Gaussian i

    Array of MultivariateGaussian where gaussians(i) represents the Multivariate Gaussian (Normal) Distribution for Gaussian i

    Annotations
    @Since( "1.3.0" )
  11. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  14. def k: Int

    Permalink

    Number of gaussians in mixture

    Number of gaussians in mixture

    Annotations
    @Since( "1.3.0" )
  15. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. def predict(points: JavaRDD[Vector]): JavaRDD[Integer]

    Permalink

    Java-friendly version of predict()

    Java-friendly version of predict()

    Annotations
    @Since( "1.4.0" )
  19. def predict(point: Vector): Int

    Permalink

    Maps given point to its cluster index.

    Maps given point to its cluster index.

    Annotations
    @Since( "1.5.0" )
  20. def predict(points: RDD[Vector]): RDD[Int]

    Permalink

    Maps given points to their cluster indices.

    Maps given points to their cluster indices.

    Annotations
    @Since( "1.3.0" )
  21. def predictSoft(point: Vector): Array[Double]

    Permalink

    Given the input vector, return the membership values to all mixture components.

    Given the input vector, return the membership values to all mixture components.

    Annotations
    @Since( "1.4.0" )
  22. def predictSoft(points: RDD[Vector]): RDD[Array[Double]]

    Permalink

    Given the input vectors, return the membership value of each vector to all mixture components.

    Given the input vectors, return the membership value of each vector to all mixture components.

    Annotations
    @Since( "1.3.0" )
  23. def save(sc: SparkContext, path: String): Unit

    Permalink

    Save this model to the given path.

    Save this model to the given path.

    This saves:

    • human-readable (JSON) model metadata to path/metadata/
    • Parquet formatted data to path/data/

    The model may be loaded using Loader.load.

    sc

    Spark context used to save model data.

    path

    Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.

    Definition Classes
    GaussianMixtureModelSaveable
    Annotations
    @Since( "1.4.0" )
  24. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  25. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  26. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. val weights: Array[Double]

    Permalink

    Weights for each Gaussian distribution in the mixture, where weights(i) is the weight for Gaussian i, and weights.sum == 1

    Weights for each Gaussian distribution in the mixture, where weights(i) is the weight for Gaussian i, and weights.sum == 1

    Annotations
    @Since( "1.3.0" )

Inherited from Saveable

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped