mutate {SparkR} | R Documentation |
Return a new SparkDataFrame with the specified columns added or replaced.
mutate(.data, ...) transform(`_data`, ...) ## S4 method for signature 'SparkDataFrame' mutate(.data, ...) ## S4 method for signature 'SparkDataFrame' transform(`_data`, ...)
.data |
a SparkDataFrame. |
... |
additional column argument(s) each in the form name = col. |
_data |
a SparkDataFrame. |
A new SparkDataFrame with the new columns added or replaced.
mutate since 1.4.0
transform since 1.5.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, arrange
,
as.data.frame
,
attach,SparkDataFrame-method
,
cache
, checkpoint
,
coalesce
, collect
,
colnames
, coltypes
,
createOrReplaceTempView
,
crossJoin
, dapplyCollect
,
dapply
, describe
,
dim
, distinct
,
dropDuplicates
, dropna
,
drop
, dtypes
,
except
, explain
,
filter
, first
,
gapplyCollect
, gapply
,
getNumPartitions
, group_by
,
head
, hint
,
histogram
, insertInto
,
intersect
, isLocal
,
isStreaming
, join
,
limit
, merge
,
ncol
, nrow
,
persist
, printSchema
,
randomSplit
, rbind
,
registerTempTable
, rename
,
repartition
, sample
,
saveAsTable
, schema
,
selectExpr
, select
,
showDF
, show
,
storageLevel
, str
,
subset
, take
,
toJSON
, union
,
unpersist
, withColumn
,
with
, write.df
,
write.jdbc
, write.json
,
write.orc
, write.parquet
,
write.stream
, write.text
## Not run:
##D sparkR.session()
##D path <- "path/to/file.json"
##D df <- read.json(path)
##D newDF <- mutate(df, newCol = df$col1 * 5, newCol2 = df$col1 * 2)
##D names(newDF) # Will contain newCol, newCol2
##D newDF2 <- transform(df, newCol = df$col1 / 5, newCol2 = df$col1 * 2)
##D
##D df <- createDataFrame(list(list("Andy", 30L), list("Justin", 19L)), c("name", "age"))
##D # Replace the "age" column
##D df1 <- mutate(df, age = df$age + 1L)
## End(Not run)