coltypes {SparkR} | R Documentation |
Get column types of a SparkDataFrame
Set the column types of a SparkDataFrame.
coltypes(x) coltypes(x) <- value ## S4 method for signature 'SparkDataFrame' coltypes(x) ## S4 replacement method for signature 'SparkDataFrame,character' coltypes(x) <- value
x |
A SparkDataFrame |
value |
A character vector with the target column types for the given SparkDataFrame. Column types can be one of integer, numeric/double, character, logical, or NA to keep that column as-is. |
value A character vector with the column types of the given SparkDataFrame
coltypes since 1.6.0
coltypes<- since 1.6.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, arrange
,
as.data.frame
,
attach,SparkDataFrame-method
,
cache
, checkpoint
,
coalesce
, collect
,
colnames
,
createOrReplaceTempView
,
crossJoin
, dapplyCollect
,
dapply
, describe
,
dim
, distinct
,
dropDuplicates
, dropna
,
drop
, dtypes
,
except
, explain
,
filter
, first
,
gapplyCollect
, gapply
,
getNumPartitions
, group_by
,
head
, hint
,
histogram
, insertInto
,
intersect
, isLocal
,
isStreaming
, join
,
limit
, merge
,
mutate
, ncol
,
nrow
, persist
,
printSchema
, randomSplit
,
rbind
, registerTempTable
,
rename
, repartition
,
sample
, saveAsTable
,
schema
, selectExpr
,
select
, showDF
,
show
, storageLevel
,
str
, subset
,
take
, toJSON
,
union
, unpersist
,
withColumn
, with
,
write.df
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.stream
,
write.text
## Not run:
##D irisDF <- createDataFrame(iris)
##D coltypes(irisDF) # get column types
## End(Not run)
## Not run:
##D sparkR.session()
##D path <- "path/to/file.json"
##D df <- read.json(path)
##D coltypes(df) <- c("character", "integer") # set column types
##D coltypes(df) <- c(NA, "numeric") # set column types
## End(Not run)