dapply {SparkR} | R Documentation |
Apply a function to each partition of a SparkDataFrame.
Apply a function to each partition of a SparkDataFrame and collect the result back
dapply(x, func, schema) dapplyCollect(x, func) ## S4 method for signature 'SparkDataFrame,'function',structType' dapply(x, func, schema) ## S4 method for signature 'SparkDataFrame,'function'' dapplyCollect(x, func)
x |
A SparkDataFrame |
func |
A function to be applied to each partition of the SparkDataFrame. func should have only one parameter, to which a data.frame corresponds to each partition will be passed. The output of func should be a data.frame. |
schema |
The schema of the resulting DataFrame after the function is applied. It must match the output of func. |
x |
A SparkDataFrame |
func |
A function to be applied to each partition of the SparkDataFrame. func should have only one parameter, to which a data.frame corresponds to each partition will be passed. The output of func should be a data.frame. |
Other SparkDataFrame functions: SparkDataFrame-class
,
[[
, agg
,
arrange
, as.data.frame
,
attach
, cache
,
collect
, colnames
,
coltypes
, columns
,
count
, describe
,
dim
, distinct
,
dropDuplicates
, dropna
,
drop
, dtypes
,
except
, explain
,
filter
, first
,
group_by
, head
,
histogram
, insertInto
,
intersect
, isLocal
,
join
, limit
,
merge
, mutate
,
ncol
, persist
,
printSchema
,
registerTempTable
, rename
,
repartition
, sample
,
saveAsTable
, selectExpr
,
select
, showDF
,
show
, str
,
take
, unionAll
,
unpersist
, withColumn
,
write.df
, write.jdbc
,
write.json
, write.parquet
,
write.text
Other SparkDataFrame functions: SparkDataFrame-class
,
[[
, agg
,
arrange
, as.data.frame
,
attach
, cache
,
collect
, colnames
,
coltypes
, columns
,
count
, describe
,
dim
, distinct
,
dropDuplicates
, dropna
,
drop
, dtypes
,
except
, explain
,
filter
, first
,
group_by
, head
,
histogram
, insertInto
,
intersect
, isLocal
,
join
, limit
,
merge
, mutate
,
ncol
, persist
,
printSchema
,
registerTempTable
, rename
,
repartition
, sample
,
saveAsTable
, selectExpr
,
select
, showDF
,
show
, str
,
take
, unionAll
,
unpersist
, withColumn
,
write.df
, write.jdbc
,
write.json
, write.parquet
,
write.text
## Not run:
##D df <- createDataFrame (sqlContext, iris)
##D df1 <- dapply(df, function(x) { x }, schema(df))
##D collect(df1)
##D
##D # filter and add a column
##D df <- createDataFrame (
##D sqlContext,
##D list(list(1L, 1, "1"), list(2L, 2, "2"), list(3L, 3, "3")),
##D c("a", "b", "c"))
##D schema <- structType(structField("a", "integer"), structField("b", "double"),
##D structField("c", "string"), structField("d", "integer"))
##D df1 <- dapply(
##D df,
##D function(x) {
##D y <- x[x[1] > 1, ]
##D y <- cbind(y, y[1] + 1L)
##D },
##D schema)
##D collect(df1)
##D # the result
##D # a b c d
##D # 1 2 2 2 3
##D # 2 3 3 3 4
## End(Not run)
## Not run:
##D df <- createDataFrame (sqlContext, iris)
##D ldf <- dapplyCollect(df, function(x) { x })
##D
##D # filter and add a column
##D df <- createDataFrame (
##D sqlContext,
##D list(list(1L, 1, "1"), list(2L, 2, "2"), list(3L, 3, "3")),
##D c("a", "b", "c"))
##D ldf <- dapplyCollect(
##D df,
##D function(x) {
##D y <- x[x[1] > 1, ]
##D y <- cbind(y, y[1] + 1L)
##D })
##D # the result
##D # a b c d
##D # 2 2 2 3
##D # 3 3 3 4
## End(Not run)