dropna {SparkR} | R Documentation |
Returns a new DataFrame omitting rows with null values.
Replace null values.
## S4 method for signature 'DataFrame' dropna(x, how = c("any", "all"), minNonNulls = NULL, cols = NULL) ## S4 method for signature 'DataFrame' na.omit(object, how = c("any", "all"), minNonNulls = NULL, cols = NULL) ## S4 method for signature 'DataFrame' fillna(x, value, cols = NULL) dropna(x, how = c("any", "all"), minNonNulls = NULL, cols = NULL) na.omit(object, ...) fillna(x, value, cols = NULL)
x |
A SparkSQL DataFrame. |
how |
"any" or "all". if "any", drop a row if it contains any nulls. if "all", drop a row only if all its values are null. if minNonNulls is specified, how is ignored. |
minNonNulls |
If specified, drop rows that have less than minNonNulls non-null values. This overwrites the how parameter. |
cols |
Optional list of column names to consider. |
value |
Value to replace null values with. Should be an integer, numeric, character or named list. If the value is a named list, then cols is ignored and value must be a mapping from column name (character) to replacement value. The replacement value must be an integer, numeric or character. |
x |
A SparkSQL DataFrame. |
cols |
optional list of column names to consider. Columns specified in cols that do not have matching data type are ignored. For example, if value is a character, and subset contains a non-character column, then the non-character column is simply ignored. |
A DataFrame
Other DataFrame functions: $
,
$<-
, select
,
select
,
select,DataFrame,Column-method
,
select,DataFrame,list-method
,
selectExpr
; DataFrame-class
,
dataFrame
, groupedData
;
[
, [
, [[
,
subset
; agg
,
agg
,
count,GroupedData-method
,
summarize
, summarize
;
arrange
, arrange
,
arrange
, orderBy
,
orderBy
; as.data.frame
,
as.data.frame,DataFrame-method
;
attach
,
attach,DataFrame-method
;
cache
; collect
;
colnames
, colnames
,
colnames<-
, colnames<-
,
columns
, names
,
names<-
; coltypes
,
coltypes
, coltypes<-
,
coltypes<-
; columns
,
dtypes
, printSchema
,
schema
, schema
;
count
, nrow
;
describe
, describe
,
describe
, summary
,
summary
,
summary,PipelineModel-method
;
dim
; distinct
,
unique
; dtypes
;
except
, except
;
explain
, explain
;
filter
, filter
,
where
, where
;
first
, first
;
groupBy
, groupBy
,
group_by
, group_by
;
head
; insertInto
,
insertInto
; intersect
,
intersect
; isLocal
,
isLocal
; join
;
limit
, limit
;
merge
, merge
;
mutate
, mutate
,
transform
, transform
;
ncol
; persist
;
printSchema
; rbind
,
rbind
, unionAll
,
unionAll
; registerTempTable
,
registerTempTable
; rename
,
rename
, withColumnRenamed
,
withColumnRenamed
;
repartition
; sample
,
sample
, sample_frac
,
sample_frac
;
saveAsParquetFile
,
saveAsParquetFile
,
write.parquet
, write.parquet
;
saveAsTable
, saveAsTable
;
saveDF
, saveDF
,
write.df
, write.df
,
write.df
; selectExpr
;
showDF
, showDF
;
show
, show
,
show,GroupedData-method
; str
;
take
; unpersist
;
withColumn
, withColumn
;
write.json
, write.json
;
write.text
, write.text
## Not run:
##D sc <- sparkR.init()
##D sqlCtx <- sparkRSQL.init(sc)
##D path <- "path/to/file.json"
##D df <- read.json(sqlCtx, path)
##D dropna(df)
## End(Not run)
## Not run:
##D sc <- sparkR.init()
##D sqlCtx <- sparkRSQL.init(sc)
##D path <- "path/to/file.json"
##D df <- read.json(sqlCtx, path)
##D fillna(df, 1)
##D fillna(df, list("age" = 20, "name" = "unknown"))
## End(Not run)