MLlib - Basic Statistics
- Summary statistics
- Correlations
- Stratified sampling
- Hypothesis testing
- Random data generation
- Kernel density estimation
\[
\newcommand{\R}{\mathbb{R}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\x}{\mathbf{x}}
\newcommand{\y}{\mathbf{y}}
\newcommand{\wv}{\mathbf{w}}
\newcommand{\av}{\mathbf{\alpha}}
\newcommand{\bv}{\mathbf{b}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\id}{\mathbf{I}}
\newcommand{\ind}{\mathbf{1}}
\newcommand{\0}{\mathbf{0}}
\newcommand{\unit}{\mathbf{e}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\zero}{\mathbf{0}}
\]
Summary statistics
We provide column summary statistics for RDD[Vector]
through the function colStats
available in Statistics
.
colStats()
returns an instance of
MultivariateStatisticalSummary
,
which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the
total count.
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary, Statistics}
val observations: RDD[Vector] = ... // an RDD of Vectors
// Compute column summary statistics.
val summary: MultivariateStatisticalSummary = Statistics.colStats(observations)
println(summary.mean) // a dense vector containing the mean value for each column
println(summary.variance) // column-wise variance
println(summary.numNonzeros) // number of nonzeros in each column
colStats()
returns an instance of
MultivariateStatisticalSummary
,
which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the
total count.
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.stat.MultivariateStatisticalSummary;
import org.apache.spark.mllib.stat.Statistics;
JavaSparkContext jsc = ...
JavaRDD<Vector> mat = ... // an RDD of Vectors
// Compute column summary statistics.
MultivariateStatisticalSummary summary = Statistics.colStats(mat.rdd());
System.out.println(summary.mean()); // a dense vector containing the mean value for each column
System.out.println(summary.variance()); // column-wise variance
System.out.println(summary.numNonzeros()); // number of nonzeros in each column
colStats()
returns an instance of
MultivariateStatisticalSummary
,
which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the
total count.
from pyspark.mllib.stat import Statistics
sc = ... # SparkContext
mat = ... # an RDD of Vectors
# Compute column summary statistics.
summary = Statistics.colStats(mat)
print(summary.mean())
print(summary.variance())
print(summary.numNonzeros())
Correlations
Calculating the correlation between two series of data is a common operation in Statistics. In MLlib we provide the flexibility to calculate pairwise correlations among many series. The supported correlation methods are currently Pearson’s and Spearman’s correlation.
Statistics
provides methods to
calculate correlations between series. Depending on the type of input, two RDD[Double]
s or
an RDD[Vector]
, the output will be a Double
or the correlation Matrix
respectively.
import org.apache.spark.SparkContext
import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.stat.Statistics
val sc: SparkContext = ...
val seriesX: RDD[Double] = ... // a series
val seriesY: RDD[Double] = ... // must have the same number of partitions and cardinality as seriesX
// compute the correlation using Pearson's method. Enter "spearman" for Spearman's method. If a
// method is not specified, Pearson's method will be used by default.
val correlation: Double = Statistics.corr(seriesX, seriesY, "pearson")
val data: RDD[Vector] = ... // note that each Vector is a row and not a column
// calculate the correlation matrix using Pearson's method. Use "spearman" for Spearman's method.
// If a method is not specified, Pearson's method will be used by default.
val correlMatrix: Matrix = Statistics.corr(data, "pearson")
Statistics
provides methods to
calculate correlations between series. Depending on the type of input, two JavaDoubleRDD
s or
a JavaRDD<Vector>
, the output will be a Double
or the correlation Matrix
respectively.
import org.apache.spark.api.java.JavaDoubleRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.linalg.*;
import org.apache.spark.mllib.stat.Statistics;
JavaSparkContext jsc = ...
JavaDoubleRDD seriesX = ... // a series
JavaDoubleRDD seriesY = ... // must have the same number of partitions and cardinality as seriesX
// compute the correlation using Pearson's method. Enter "spearman" for Spearman's method. If a
// method is not specified, Pearson's method will be used by default.
Double correlation = Statistics.corr(seriesX.srdd(), seriesY.srdd(), "pearson");
JavaRDD<Vector> data = ... // note that each Vector is a row and not a column
// calculate the correlation matrix using Pearson's method. Use "spearman" for Spearman's method.
// If a method is not specified, Pearson's method will be used by default.
Matrix correlMatrix = Statistics.corr(data.rdd(), "pearson");
Statistics
provides methods to
calculate correlations between series. Depending on the type of input, two RDD[Double]
s or
an RDD[Vector]
, the output will be a Double
or the correlation Matrix
respectively.
from pyspark.mllib.stat import Statistics
sc = ... # SparkContext
seriesX = ... # a series
seriesY = ... # must have the same number of partitions and cardinality as seriesX
# Compute the correlation using Pearson's method. Enter "spearman" for Spearman's method. If a
# method is not specified, Pearson's method will be used by default.
print(Statistics.corr(seriesX, seriesY, method="pearson"))
data = ... # an RDD of Vectors
# calculate the correlation matrix using Pearson's method. Use "spearman" for Spearman's method.
# If a method is not specified, Pearson's method will be used by default.
print(Statistics.corr(data, method="pearson"))
Stratified sampling
Unlike the other statistics functions, which reside in MLlib, stratified sampling methods,
sampleByKey
and sampleByKeyExact
, can be performed on RDD’s of key-value pairs. For stratified
sampling, the keys can be thought of as a label and the value as a specific attribute. For example
the key can be man or woman, or document ids, and the respective values can be the list of ages
of the people in the population or the list of words in the documents. The sampleByKey
method
will flip a coin to decide whether an observation will be sampled or not, therefore requires one
pass over the data, and provides an expected sample size. sampleByKeyExact
requires significant
more resources than the per-stratum simple random sampling used in sampleByKey
, but will provide
the exact sampling size with 99.99% confidence. sampleByKeyExact
is currently not supported in
python.
sampleByKeyExact()
allows users to
sample exactly $\lceil f_k \cdot n_k \rceil \, \forall k \in K$ items, where $f_k$ is the desired
fraction for key $k$, $n_k$ is the number of key-value pairs for key $k$, and $K$ is the set of
keys. Sampling without replacement requires one additional pass over the RDD to guarantee sample
size, whereas sampling with replacement requires two additional passes.
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.rdd.PairRDDFunctions
val sc: SparkContext = ...
val data = ... // an RDD[(K, V)] of any key value pairs
val fractions: Map[K, Double] = ... // specify the exact fraction desired from each key
// Get an exact sample from each stratum
val approxSample = data.sampleByKey(withReplacement = false, fractions)
val exactSample = data.sampleByKeyExact(withReplacement = false, fractions)
sampleByKeyExact()
allows users to
sample exactly $\lceil f_k \cdot n_k \rceil \, \forall k \in K$ items, where $f_k$ is the desired
fraction for key $k$, $n_k$ is the number of key-value pairs for key $k$, and $K$ is the set of
keys. Sampling without replacement requires one additional pass over the RDD to guarantee sample
size, whereas sampling with replacement requires two additional passes.
import java.util.Map;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
JavaSparkContext jsc = ...
JavaPairRDD<K, V> data = ... // an RDD of any key value pairs
Map<K, Object> fractions = ... // specify the exact fraction desired from each key
// Get an exact sample from each stratum
JavaPairRDD<K, V> approxSample = data.sampleByKey(false, fractions);
JavaPairRDD<K, V> exactSample = data.sampleByKeyExact(false, fractions);
sampleByKey()
allows users to
sample approximately $\lceil f_k \cdot n_k \rceil \, \forall k \in K$ items, where $f_k$ is the
desired fraction for key $k$, $n_k$ is the number of key-value pairs for key $k$, and $K$ is the
set of keys.
Note: sampleByKeyExact()
is currently not supported in Python.
sc = ... # SparkContext
data = ... # an RDD of any key value pairs
fractions = ... # specify the exact fraction desired from each key as a dictionary
approxSample = data.sampleByKey(False, fractions);
Hypothesis testing
Hypothesis testing is a powerful tool in statistics to determine whether a result is statistically
significant, whether this result occurred by chance or not. MLlib currently supports Pearson’s
chi-squared ( $\chi^2$) tests for goodness of fit and independence. The input data types determine
whether the goodness of fit or the independence test is conducted. The goodness of fit test requires
an input type of Vector
, whereas the independence test requires a Matrix
as input.
MLlib also supports the input type RDD[LabeledPoint]
to enable feature selection via chi-squared
independence tests.
Statistics
provides methods to
run Pearson’s chi-squared tests. The following example demonstrates how to run and interpret
hypothesis tests.
import org.apache.spark.SparkContext
import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.stat.Statistics._
val sc: SparkContext = ...
val vec: Vector = ... // a vector composed of the frequencies of events
// compute the goodness of fit. If a second vector to test against is not supplied as a parameter,
// the test runs against a uniform distribution.
val goodnessOfFitTestResult = Statistics.chiSqTest(vec)
println(goodnessOfFitTestResult) // summary of the test including the p-value, degrees of freedom,
// test statistic, the method used, and the null hypothesis.
val mat: Matrix = ... // a contingency matrix
// conduct Pearson's independence test on the input contingency matrix
val independenceTestResult = Statistics.chiSqTest(mat)
println(independenceTestResult) // summary of the test including the p-value, degrees of freedom...
val obs: RDD[LabeledPoint] = ... // (feature, label) pairs.
// The contingency table is constructed from the raw (feature, label) pairs and used to conduct
// the independence test. Returns an array containing the ChiSquaredTestResult for every feature
// against the label.
val featureTestResults: Array[ChiSqTestResult] = Statistics.chiSqTest(obs)
var i = 1
featureTestResults.foreach { result =>
println(s"Column $i:\n$result")
i += 1
} // summary of the test
Statistics
provides methods to
run Pearson’s chi-squared tests. The following example demonstrates how to run and interpret
hypothesis tests.
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.linalg.*;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.stat.Statistics;
import org.apache.spark.mllib.stat.test.ChiSqTestResult;
JavaSparkContext jsc = ...
Vector vec = ... // a vector composed of the frequencies of events
// compute the goodness of fit. If a second vector to test against is not supplied as a parameter,
// the test runs against a uniform distribution.
ChiSqTestResult goodnessOfFitTestResult = Statistics.chiSqTest(vec);
// summary of the test including the p-value, degrees of freedom, test statistic, the method used,
// and the null hypothesis.
System.out.println(goodnessOfFitTestResult);
Matrix mat = ... // a contingency matrix
// conduct Pearson's independence test on the input contingency matrix
ChiSqTestResult independenceTestResult = Statistics.chiSqTest(mat);
// summary of the test including the p-value, degrees of freedom...
System.out.println(independenceTestResult);
JavaRDD<LabeledPoint> obs = ... // an RDD of labeled points
// The contingency table is constructed from the raw (feature, label) pairs and used to conduct
// the independence test. Returns an array containing the ChiSquaredTestResult for every feature
// against the label.
ChiSqTestResult[] featureTestResults = Statistics.chiSqTest(obs.rdd());
int i = 1;
for (ChiSqTestResult result : featureTestResults) {
System.out.println("Column " + i + ":");
System.out.println(result); // summary of the test
i++;
}
Statistics
provides methods to
run Pearson’s chi-squared tests. The following example demonstrates how to run and interpret
hypothesis tests.
from pyspark import SparkContext
from pyspark.mllib.linalg import Vectors, Matrices
from pyspark.mllib.regresssion import LabeledPoint
from pyspark.mllib.stat import Statistics
sc = SparkContext()
vec = Vectors.dense(...) # a vector composed of the frequencies of events
# compute the goodness of fit. If a second vector to test against is not supplied as a parameter,
# the test runs against a uniform distribution.
goodnessOfFitTestResult = Statistics.chiSqTest(vec)
print(goodnessOfFitTestResult) # summary of the test including the p-value, degrees of freedom,
# test statistic, the method used, and the null hypothesis.
mat = Matrices.dense(...) # a contingency matrix
# conduct Pearson's independence test on the input contingency matrix
independenceTestResult = Statistics.chiSqTest(mat)
print(independenceTestResult) # summary of the test including the p-value, degrees of freedom...
obs = sc.parallelize(...) # LabeledPoint(feature, label) .
# The contingency table is constructed from an RDD of LabeledPoint and used to conduct
# the independence test. Returns an array containing the ChiSquaredTestResult for every feature
# against the label.
featureTestResults = Statistics.chiSqTest(obs)
for i, result in enumerate(featureTestResults):
print("Column $d:" % (i + 1))
print(result)
Additionally, MLlib provides a 1-sample, 2-sided implementation of the Kolmogorov-Smirnov (KS) test
for equality of probability distributions. By providing the name of a theoretical distribution
(currently solely supported for the normal distribution) and its parameters, or a function to
calculate the cumulative distribution according to a given theoretical distribution, the user can
test the null hypothesis that their sample is drawn from that distribution. In the case that the
user tests against the normal distribution (distName="norm"
), but does not provide distribution
parameters, the test initializes to the standard normal distribution and logs an appropriate
message.
Statistics
provides methods to
run a 1-sample, 2-sided Kolmogorov-Smirnov test. The following example demonstrates how to run
and interpret the hypothesis tests.
import org.apache.spark.mllib.stat.Statistics
val data: RDD[Double] = ... // an RDD of sample data
// run a KS test for the sample versus a standard normal distribution
val testResult = Statistics.kolmogorovSmirnovTest(data, "norm", 0, 1)
println(testResult) // summary of the test including the p-value, test statistic,
// and null hypothesis
// if our p-value indicates significance, we can reject the null hypothesis
// perform a KS test using a cumulative distribution function of our making
val myCDF: Double => Double = ...
val testResult2 = Statistics.kolmogorovSmirnovTest(data, myCDF)
Statistics
provides methods to
run a 1-sample, 2-sided Kolmogorov-Smirnov test. The following example demonstrates how to run
and interpret the hypothesis tests.
import java.util.Arrays;
import org.apache.spark.api.java.JavaDoubleRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.stat.Statistics;
import org.apache.spark.mllib.stat.test.KolmogorovSmirnovTestResult;
JavaSparkContext jsc = ...
JavaDoubleRDD data = jsc.parallelizeDoubles(Arrays.asList(0.2, 1.0, ...));
KolmogorovSmirnovTestResult testResult = Statistics.kolmogorovSmirnovTest(data, "norm", 0.0, 1.0);
// summary of the test including the p-value, test statistic,
// and null hypothesis
// if our p-value indicates significance, we can reject the null hypothesis
System.out.println(testResult);
Statistics
provides methods to
run a 1-sample, 2-sided Kolmogorov-Smirnov test. The following example demonstrates how to run
and interpret the hypothesis tests.
from pyspark.mllib.stat import Statistics
parallelData = sc.parallelize([1.0, 2.0, ... ])
# run a KS test for the sample versus a standard normal distribution
testResult = Statistics.kolmogorovSmirnovTest(parallelData, "norm", 0, 1)
print(testResult) # summary of the test including the p-value, test statistic,
# and null hypothesis
# if our p-value indicates significance, we can reject the null hypothesis
# Note that the Scala functionality of calling Statistics.kolmogorovSmirnovTest with
# a lambda to calculate the CDF is not made available in the Python API
Random data generation
Random data generation is useful for randomized algorithms, prototyping, and performance testing. MLlib supports generating random RDDs with i.i.d. values drawn from a given distribution: uniform, standard normal, or Poisson.
RandomRDDs
provides factory
methods to generate random double RDDs or vector RDDs.
The following example generates a random double RDD, whose values follows the standard normal
distribution N(0, 1)
, and then map it to N(1, 4)
.
import org.apache.spark.SparkContext
import org.apache.spark.mllib.random.RandomRDDs._
val sc: SparkContext = ...
// Generate a random double RDD that contains 1 million i.i.d. values drawn from the
// standard normal distribution `N(0, 1)`, evenly distributed in 10 partitions.
val u = normalRDD(sc, 1000000L, 10)
// Apply a transform to get a random double RDD following `N(1, 4)`.
val v = u.map(x => 1.0 + 2.0 * x)
RandomRDDs
provides factory
methods to generate random double RDDs or vector RDDs.
The following example generates a random double RDD, whose values follows the standard normal
distribution N(0, 1)
, and then map it to N(1, 4)
.
import org.apache.spark.SparkContext;
import org.apache.spark.api.JavaDoubleRDD;
import static org.apache.spark.mllib.random.RandomRDDs.*;
JavaSparkContext jsc = ...
// Generate a random double RDD that contains 1 million i.i.d. values drawn from the
// standard normal distribution `N(0, 1)`, evenly distributed in 10 partitions.
JavaDoubleRDD u = normalJavaRDD(jsc, 1000000L, 10);
// Apply a transform to get a random double RDD following `N(1, 4)`.
JavaDoubleRDD v = u.map(
new Function<Double, Double>() {
public Double call(Double x) {
return 1.0 + 2.0 * x;
}
});
RandomRDDs
provides factory
methods to generate random double RDDs or vector RDDs.
The following example generates a random double RDD, whose values follows the standard normal
distribution N(0, 1)
, and then map it to N(1, 4)
.
from pyspark.mllib.random import RandomRDDs
sc = ... # SparkContext
# Generate a random double RDD that contains 1 million i.i.d. values drawn from the
# standard normal distribution `N(0, 1)`, evenly distributed in 10 partitions.
u = RandomRDDs.uniformRDD(sc, 1000000L, 10)
# Apply a transform to get a random double RDD following `N(1, 4)`.
v = u.map(lambda x: 1.0 + 2.0 * x)
Kernel density estimation
Kernel density estimation is a technique useful for visualizing empirical probability distributions without requiring assumptions about the particular distribution that the observed samples are drawn from. It computes an estimate of the probability density function of a random variables, evaluated at a given set of points. It achieves this estimate by expressing the PDF of the empirical distribution at a particular point as the the mean of PDFs of normal distributions centered around each of the samples.
KernelDensity
provides methods
to compute kernel density estimates from an RDD of samples. The following example demonstrates how
to do so.
import org.apache.spark.mllib.stat.KernelDensity
import org.apache.spark.rdd.RDD
val data: RDD[Double] = ... // an RDD of sample data
// Construct the density estimator with the sample data and a standard deviation for the Gaussian
// kernels
val kd = new KernelDensity()
.setSample(data)
.setBandwidth(3.0)
// Find density estimates for the given values
val densities = kd.estimate(Array(-1.0, 2.0, 5.0))
KernelDensity
provides methods
to compute kernel density estimates from an RDD of samples. The following example demonstrates how
to do so.
import org.apache.spark.mllib.stat.KernelDensity;
import org.apache.spark.rdd.RDD;
RDD<Double> data = ... // an RDD of sample data
// Construct the density estimator with the sample data and a standard deviation for the Gaussian
// kernels
KernelDensity kd = new KernelDensity()
.setSample(data)
.setBandwidth(3.0);
// Find density estimates for the given values
double[] densities = kd.estimate(new double[] {-1.0, 2.0, 5.0});
KernelDensity
provides methods
to compute kernel density estimates from an RDD of samples. The following example demonstrates how
to do so.
from pyspark.mllib.stat import KernelDensity
data = ... # an RDD of sample data
# Construct the density estimator with the sample data and a standard deviation for the Gaussian
# kernels
kd = KernelDensity()
kd.setSample(data)
kd.setBandwidth(3.0)
# Find density estimates for the given values
densities = kd.estimate([-1.0, 2.0, 5.0])