MLlib - Old Migration Guides
The migration guide for the current Spark version is kept on the MLlib Programming Guide main page.
From 1.3 to 1.4
In the spark.mllib
package, there were several breaking changes, but all in DeveloperApi
or Experimental
APIs:
- Gradient-Boosted Trees
- (Breaking change) The signature of the
Loss.gradient
method was changed. This is only an issues for users who wrote their own losses for GBTs. - (Breaking change) The
apply
andcopy
methods for the case classBoostingStrategy
have been changed because of a modification to the case class fields. This could be an issue for users who useBoostingStrategy
to set GBT parameters.
- (Breaking change) The signature of the
- (Breaking change) The return value of
LDA.run
has changed. It now returns an abstract classLDAModel
instead of the concrete classDistributedLDAModel
. The object of typeLDAModel
can still be cast to the appropriate concrete type, which depends on the optimization algorithm.
In the spark.ml
package, several major API changes occurred, including:
Param
and other APIs for specifying parametersuid
unique IDs for Pipeline components- Reorganization of certain classes
Since the spark.ml
API was an alpha component in Spark 1.3, we do not list all changes here.
However, since 1.4 spark.ml
is no longer an alpha component, we will provide details on any API
changes for future releases.
From 1.2 to 1.3
In the spark.mllib
package, there were several breaking changes. The first change (in ALS
) is the only one in a component not marked as Alpha or Experimental.
- (Breaking change) In
ALS
, the extraneous methodsolveLeastSquares
has been removed. TheDeveloperApi
methodanalyzeBlocks
was also removed. - (Breaking change)
StandardScalerModel
remains an Alpha component. In it, thevariance
method has been replaced with thestd
method. To compute the column variance values returned by the originalvariance
method, simply square the standard deviation values returned bystd
. - (Breaking change)
StreamingLinearRegressionWithSGD
remains an Experimental component. In it, there were two changes:- The constructor taking arguments was removed in favor of a builder pattern using the default constructor plus parameter setter methods.
- Variable
model
is no longer public.
- (Breaking change)
DecisionTree
remains an Experimental component. In it and its associated classes, there were several changes:- In
DecisionTree
, the deprecated class methodtrain
has been removed. (The object/statictrain
methods remain.) - In
Strategy
, thecheckpointDir
parameter has been removed. Checkpointing is still supported, but the checkpoint directory must be set before calling tree and tree ensemble training.
- In
PythonMLlibAPI
(the interface between Scala/Java and Python for MLlib) was a public API but is now private, declaredprivate[python]
. This was never meant for external use.- In linear regression (including Lasso and ridge regression), the squared loss is now divided by 2. So in order to produce the same result as in 1.2, the regularization parameter needs to be divided by 2 and the step size needs to be multiplied by 2.
In the spark.ml
package, the main API changes are from Spark SQL. We list the most important changes here:
- The old SchemaRDD has been replaced with DataFrame with a somewhat modified API. All algorithms in Spark ML which used to use SchemaRDD now use DataFrame.
- In Spark 1.2, we used implicit conversions from
RDD
s ofLabeledPoint
intoSchemaRDD
s by callingimport sqlContext._
wheresqlContext
was an instance ofSQLContext
. These implicits have been moved, so we now callimport sqlContext.implicits._
. - Java APIs for SQL have also changed accordingly. Please see the examples above and the Spark SQL Programming Guide for details.
Other changes were in LogisticRegression
:
- The
scoreCol
output column (with default value “score”) was renamed to beprobabilityCol
(with default value “probability”). The type was originallyDouble
(for the probability of class 1.0), but it is nowVector
(for the probability of each class, to support multiclass classification in the future). - In Spark 1.2,
LogisticRegressionModel
did not include an intercept. In Spark 1.3, it includes an intercept; however, it will always be 0.0 since it uses the default settings for spark.mllib.LogisticRegressionWithLBFGS. The option to use an intercept will be added in the future.
From 1.1 to 1.2
The only API changes in MLlib v1.2 are in
DecisionTree
,
which continues to be an experimental API in MLlib 1.2:
-
(Breaking change) The Scala API for classification takes a named argument specifying the number of classes. In MLlib v1.1, this argument was called
numClasses
in Python andnumClassesForClassification
in Scala. In MLlib v1.2, the names are both set tonumClasses
. ThisnumClasses
parameter is specified either viaStrategy
or viaDecisionTree
statictrainClassifier
andtrainRegressor
methods. -
(Breaking change) The API for
Node
has changed. This should generally not affect user code, unless the user manually constructs decision trees (instead of using thetrainClassifier
ortrainRegressor
methods). The treeNode
now includes more information, including the probability of the predicted label (for classification). -
Printing methods’ output has changed. The
toString
(Scala/Java) and__repr__
(Python) methods used to print the full model; they now print a summary. For the full model, usetoDebugString
.
Examples in the Spark distribution and examples in the Decision Trees Guide have been updated accordingly.
From 1.0 to 1.1
The only API changes in MLlib v1.1 are in
DecisionTree
,
which continues to be an experimental API in MLlib 1.1:
-
(Breaking change) The meaning of tree depth has been changed by 1 in order to match the implementations of trees in scikit-learn and in rpart. In MLlib v1.0, a depth-1 tree had 1 leaf node, and a depth-2 tree had 1 root node and 2 leaf nodes. In MLlib v1.1, a depth-0 tree has 1 leaf node, and a depth-1 tree has 1 root node and 2 leaf nodes. This depth is specified by the
maxDepth
parameter inStrategy
or viaDecisionTree
statictrainClassifier
andtrainRegressor
methods. -
(Non-breaking change) We recommend using the newly added
trainClassifier
andtrainRegressor
methods to build aDecisionTree
, rather than using the old parameter classStrategy
. These new training methods explicitly separate classification and regression, and they replace specialized parameter types with simpleString
types.
Examples of the new, recommended trainClassifier
and trainRegressor
are given in the
Decision Trees Guide.
From 0.9 to 1.0
In MLlib v1.0, we support both dense and sparse input in a unified way, which introduces a few breaking changes. If your data is sparse, please store it in a sparse format instead of dense to take advantage of sparsity in both storage and computation. Details are described below.